Skip to main content

Mathematical simulation of nonstationary regimes of natural convection in a cubical enclosure with finite-thickness heat-conducting walls

Abstract

Nonstationary regimes of conjugate thermal-gravitational convection in a cubical enclosure in the conditions of horizontal temperature difference is numerically analyzed. The external surfaces of two opposite walls were at constant different temperatures, the rest external edges were considered adiabatic. The mathematical model based on Oberbeck-Bussinesq equations is formulated in dimensionless natural velocity-pressure variables. Typical temperature and velocity fields, which represent the effect of the nonstationarity factor, Prandtl number, and thermophysical characteristics of the enclosure solid walls on the flow and heat transfer, are obtained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Younis, O., Pallares, J., and Grau, F.X., Transient Natural Convection Cooling of a High Prandtl Number Fluid in a Cubical Cavity, Meccanica, 2011, vol. 46, pp. 989–1006.

    Article  MATH  Google Scholar 

  2. 2.

    Fusegi, T., Hyun, J.M., and Kuwahara, K., Three-Dimensional Natural Convection in a Cubical Enclosure with Walls of Finite Conductance, Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 1993–1997.

    Article  Google Scholar 

  3. 3.

    Da Silva, A.K. and Gosselin, L., On the Thermal Performance of an Internally Finned Three-Dimensional Cubic Enclosure in Natural Convection, Int. J. Therm. Sci., 2005, vol. 44, pp. 540–546.

    Article  Google Scholar 

  4. 4.

    Frederick, R.L. and Moraga, S.G., Three-Dimensional Natural Convection in Finned Cubical Enclosures, Int. J. Heat Fluid Flow, 2007, vol. 28, pp. 289–298.

    Article  Google Scholar 

  5. 5.

    Frederick, R.L., Heat Transfer Enhancement in Cubical Enclosures with Vertical Edges, Appl. Therm. Eng., 2007, vol. 27, pp. 1585–1592.

    Article  Google Scholar 

  6. 6.

    Heindel, T.J., Ramadhyani, S., and Incropera, F.P., Conjugate Natural Convection from an Array of Discrete Heat Sources, pt. 1, Two- and Three-Dimensional Model Validation, Int. J. Heat Fluid Flow, 1995, vol. 16, pp. 501–510.

    Article  Google Scholar 

  7. 7.

    Fedorov, A.G. and Viskanta, R., Three-DimensionalConjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging, Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 399–415.

    Article  MATH  Google Scholar 

  8. 8.

    Yusoff, S., Mohamed, M., Ahmad, K.A., Abdullah, M.Z., Mujeebu, M.A., Ali, Z.M., Idrus, F., and Yaakob, Y., 3D Conjugate Heat Transfer Analysis of PLCC Packages Mounted In-Line on a Printed Circuit Board, Int. Comm. Heat Mass Transfer, 2009, vol. 36, pp. 813–819.

    Article  Google Scholar 

  9. 9.

    Sheremet, M.A., 3D Conjugate Natural Convection in a Cubical Enclosure, Vestnik Tomsk. Gos. Univ., Mat. Mekh., 2012, no. 1(17), pp. 119–126.

    Google Scholar 

  10. 10.

    Kuznetsov, G.V. and Sheremet, M.A., Efficient Control over Heat Transfer and Hydrodynamics in Closed Regions Due to Optimal Selection of Materials for Enclosure Walls and External Heat Load, Russ. Microelectr., 2011, vol. 40, no. 5, pp. 326–332.

    Article  Google Scholar 

  11. 11.

    Patankar, S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti (Numerical Solving of Fluid Dynamics and Heat Transfer Problems), Moscow: Energoatomizdat, 1984.

    MATH  Google Scholar 

  12. 12.

    Versteeg, H.K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics. The Finite Volume Method, New York: Wiley, 1995.

    Google Scholar 

  13. 13.

    Belov, I.A., Isaev, S.A., and Korobkov, V.A., Zadachi i metody rascheta otryvnkh techenii neszhimaemoi zhidkosti (Problems and Methods for Calculating the Detached Flows of Incompressible Fluid), Leningrad: Sudostroenie, 1989.

    Google Scholar 

  14. 14.

    Ilyin, V.P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem (Incomplete Factorization Methods for Solving Algebraic Systems), Moscow: Fizmatlit, 1995.

    Google Scholar 

  15. 15.

    Bessonov, O.A., Brailovskay, V.A., Nikitin, S.A., and Polezhaev, V.I., Three-DimensionalNatural Convection in a Cubical Enclosure: A Benchmark Numerical Solution, Proc. Int. Symp. on Advances in Computational Heat Transfer, Turkey, 1997, pp. 157–165.

    Google Scholar 

  16. 16.

    Fusegi, T., Hyin, J.M., and Kuwahara, K., A Numerical Study of 3D Natural Convection in a Differently Heated Cubical Enclosure, Int. J. Heat Mass Transfer, 1991, vol. 34, pp. 1543–1557.

    Article  Google Scholar 

  17. 17.

    Artemyev, V.K. and Rozhkov, M.M., Numerical Modeling of 3D Natural Convection in a Cubical Enclosure, Trudy XIII shkoly-seminara molodykh uchenykh i spetsialistov pod rukovodstvom akademika RAN A.I. Leontyeva “Fizicheskie osnovy eksperimental’nogo i matematicheskogo modelirovaniya protsessov gazodinamiki i teplomassoobmena v energeticheskikh ustanovkakh” (Proc. XIII Workshop for Junior Scientists and Professionals headed by Academician of RAS A.I. Leontyev on Physical Principles of Experimental and Mathematical Simulation of Gas Dynamics and Heat Transfer Processes in Power Plants), St. Petersburg, vol. 1, pp. 153–157.

  18. 18.

    Ginkin, V.P. and Ganina, S.M., TheMethod and ProgramofCalculating 3D Convection on Large-Dimension Meshes, Trudy 3-ei Rossiiskoi natsional’noi konferentsii po teploobmenu (Proc. Third Russian National Conf. on Heat Transfer), Moscow, vol. 3, pp. 49–52.

  19. 19.

    Kuznetsov, G.V. and Sheremet, M.A., A Numerical Simulation of Double-Diffusive Conjugate Natural Convection in an Enclosure, Int. J. Therm. Sci., 2011, vol. 50, pp. 1878–1886.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Sheremet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheremet, M.A. Mathematical simulation of nonstationary regimes of natural convection in a cubical enclosure with finite-thickness heat-conducting walls. J. Engin. Thermophys. 22, 298–308 (2013). https://doi.org/10.1134/S1810232813040036

Download citation

Keywords

  • Natural Convection
  • Prandtl Number
  • Rayleigh Number
  • Average Nusselt Number
  • Engineer THERMOPHYSICS