Skip to main content

Disintegration of flows of superheated liquid films and jets

Abstract

This paper represents results on investigating the dynamics of boiling and disintegration of superheated liquid films and jets. The first part deals with experimental study of boiling liquid outflow through short cylindrical and slit channels. Evolution of disintegration of a hot water jet flow is observed both at low and moderate superheating and at high and limit superheating, and also for vaporization mechanisms corresponding to these superheatings. Peculiarities of disintegration of jets through slit and cylindrical channels are noticed. Results on measuring the reactive thrust of the jet through a slit channel under different geometrical conditions behind the channel outlet are represented. The 1/f fluctuations in transient regimes of superheated liquid boiling and in transient regimes of behavior of the jet shape are found. The second part of this article represents results on experimental investigation of nonsteady heat transfer and dynamics of the development of crisis phenomena at boiling of a falling subcooled liquid film in the conditions of stepwise heat release. The experimental data were obtained using synchronized high-speed infrared thermography and video. It is shown that with growth and condensation of vapor bubbles, on the liquid film interface appear large-amplitude waves that lead to considerably increasing local intensity of heat transfer. New data on the boiling incipience temperature in a subcooled liquid film, depending on the heat flux density, are obtained. It is found that the development of boiling crisis is a result of appearance of local dry patches and their subsequent growth by the mechanism of longitudinal thermal conductivity in the heat transfer wall as the equilibrium heat flux density is exceeded.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.

    Google Scholar 

  2. 2.

    Roenko, V.V., Using Superheated Water for Fire Fighting, Mir Bezopas., 2004, no. 6, pp. 20–24.

    Google Scholar 

  3. 3.

    Wildgen, A. and Straub, J., The Boiling Mechanism in Superheated Free Jets, Int. J. Multiphase Flow, 1989, vol. 15, no. 2, pp. 193–207.

    Article  Google Scholar 

  4. 4.

    Polanco, G., Hold, A.E., and Munday, G., General Review of Flashing Jet Studies, J. Hazard. Mat., 2010, no. 173, pp. 2–18.

    Google Scholar 

  5. 5.

    Kurschat, Th., Chaves, H., and Meier, G.E., Complete Adiabatic Evaporation of Highly Superheated Liquid Jets, J. Fluid Mech., 1992, vol. 236, pp. 43–59.

    ADS  Article  Google Scholar 

  6. 6.

    Simous-Moreira, J.R., Vieira, M.M., and Angelo, E., Highly Expanded Flashing Liquid Jets, J. Therm. Heat Transfer, 2002, vol. 16, no. 3, pp. 415–424.

    Article  Google Scholar 

  7. 7.

    Reshetnikov, A.V., Mazheiko, N.A., Skokov, V.N., and Koverda, V.P., Nonequilibrium Phase Transitions in a Superheated Water Jet, High Temp., 2007, vol. 45, no. 6, pp. 838–846.

    Article  Google Scholar 

  8. 8.

    Reshetnikov, A.V., Mazheiko, N.A., Vinogradov, A.V., Busov, K.A., and Koverda, V.P., Dynamic Characteristics of Boiling Jets in Superheated Aqueous Solutions, Teploenerg., 2010, no. 8, pp. 69–73.

    Google Scholar 

  9. 9.

    Shuravenko, N.A., Isaev, O.A., and Skripov, V.P., Flashing Boiling in Superheated Liquid Flows through Short Nozzles, High Temp., 1975, vol. 13, no. 4, pp. 896–898.

    Google Scholar 

  10. 10.

    Reshetnikov, A.V., Isaev, O.A., and Skripov, V.P., Critical Flow Rates of Boiling Liquid and Condensed Gas in Nonequilibrium Flow Regimes, High Temp., 1988, vol. 26, no. 3, pp. 544–48.

    Google Scholar 

  11. 11.

    Reshetnikov, A.V., Isaev, O.A., and Skripov, V.P., Flow Rate of Boiling Liquid Outflows into Atmosphere, Transition from Model Substance to Water, High Temp., 1988, vol. 26, no. 4, pp. 774–777.

    Google Scholar 

  12. 12.

    Reshetnikov, A.V., Mazheiko, N.A., Busov, K.A., Koverda, V.P., and Roenko, V.V., Crisis Phenomena in a Jet of Boiling Aqueous Solutions, Trudy pyatoi Rossiiskoi natsional’noi konferentsii po teploobmenu RNKT-5 (Proc. 5th Russian National Conf. on Heat Transfer RNCHT-5), Moscow, October 25–29, 2010, vol. 4, pp. 153–156.

    Google Scholar 

  13. 13.

    Weissman, M.B., 1/f-Noise and Other Slow, Nonexponential Kinetics in Condensed Matter, Rev. Mod. Phys., 1988, vol. 60, no. 2, pp. 537–571.

    MathSciNet  ADS  Article  Google Scholar 

  14. 14.

    Alekseenko, S.V., Nakoryakov, V.E., and Pokusaev, B.G., Wave Flow of Liquid Films, New York: Begell House, 1994.

    Google Scholar 

  15. 15.

    Kandlikar, S.C., Handbook of Phase Change: Boiling and Condensation, London: Taylor and Francis, 1999.

    Google Scholar 

  16. 16.

    Gimbutis, G., Heat Transfer at Gravitation Flow of a Liquid Film, Vilnius: Mokslas, 1988.

    Google Scholar 

  17. 17.

    Alhusseini, A.A., Tuzla, K., and Chen J.C., Falling Film Evaporation of Single Component Liquids, Int. J. Heat Mass Transfer, 1998, vol. 41, no. 12, pp. 1623–1632.

    Article  Google Scholar 

  18. 18.

    Gogonin, I.I., Heat Transfer in Boiling of Liquid in a Film Moving under Gravity, J. Eng. Phys. Thermophys., 2010, vol. 83, pp. 876–881.

    Article  Google Scholar 

  19. 19.

    Fujita, T. and Ueda, T., Heat Transfer to Falling Liquid Films and Film Breakdown-II Saturated Liquid Films with Nucleate Boiling, Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 109–118.

    Article  Google Scholar 

  20. 20.

    Ueda, T., Inoue, M., and Nagatome, S., Critical Heat Flux and Droplet Entrainment Rate in Boiling of Falling Liquid Films, Int. J. Heat Mass Transfer, 1981, vol. 24, no. 7, pp. 1257–1266.

    Article  Google Scholar 

  21. 21.

    Gogonin, I.I., The Dependence of Boiling Heat Transfer on the Properties and Geometric Parameters of Heat-Transfer Wall, High Temp., 2006, vol. 44, pp. 913–921.

    Article  Google Scholar 

  22. 22.

    Mudawar, I.A., Incropera, T.A., and Incropera, F.P., Boiling Heat Transfer and Critical Heat Flux in Liquid Film Falling on Vertically-Mounted Heat Sources, Int. J. Heat Mass Transfer, 1987, vol. 30, no. 10, pp. 2083–2095.

    Article  Google Scholar 

  23. 23.

    Koizumi, Y., Matsuo, T., Miyota, Y., and Ueda T., Dry-Out Heat Fluxes of Falling Film and Low-Mass Flux Upward-Flow in Heated Tubes, Trans. JSME B, 1998, vol. 64, pp. 2578–2585.

    Article  Google Scholar 

  24. 24.

    Matsekh, A.M. and Pavlenko, A.N., Heat-Transfer and Crisis Phenomena Features in Falling Films of Cryogenic Liquids, Thermophys. Aeromech., 2005, vol. 12, no. 1, pp. 99–112.

    Google Scholar 

  25. 25.

    Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., Transient Processes in Falling Films of Liquid under Conditions of Unsteady-State Heat Release, High Temp., 2007, vol. 45, no. 6, pp. 1–12.

    Article  Google Scholar 

  26. 26.

    Surtaev, A.S. and Pavlenko, A.N., Development of Crisis Phenomena in Falling Wavy Liquid Films at Nonstationary Heat Release, Microgravity Sci. Technol., 2010, vol. 22, iss. 2, pp. 215–221.

    Article  Google Scholar 

  27. 27.

    Borishanskiy, V.M. and Fokin, B.S., Onset of Heat-Transfer Crisis with Unsteady Increase in Heat Flux, Heat Transfer-Sov. Res., 1969, vol. 1, no. 5, pp. 1–55.

    Google Scholar 

  28. 28.

    Tsukamoto, O. and Uyemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryogenic Eng., 1980, vol. 25, pp. 476–482.

    Google Scholar 

  29. 29.

    Pavlenko, A.N. and Chekhovich, V.Yu., Heat Transfer Crisis at Transient Heat Release, Russ. J. Eng. Thermophys., 1991, vol. 1, no. 1, pp. 73–92.

    Google Scholar 

  30. 30.

    Deev, V.I., Kharitonov, V.S., Kutsenko, K.V., and Lavrukhin, A.A., Transient Boiling Crisis of Cryogenic Liquids, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 25, pp. 5477–5482.

    MATH  Article  Google Scholar 

  31. 31.

    Pavlenko, A.N. and Chekhovich, V.Yu., CriticalHeat Flux at Transient Heat Generation, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk, 1990, vol. 2, pp. 3–9.

    Google Scholar 

  32. 32.

    Pavlenko, A.N., Transient Critical Heat Flux in Liquid at Different Fixing Laws of Heat Generation, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk, 1990, vol. 2, pp. 131–137.

    Google Scholar 

  33. 33.

    Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a Self-Sustaining Evaporating Front, Thermophys. Aeromech., 1999, vol. 6, no. 1, pp. 105–117.

    Google Scholar 

  34. 34.

    Pavlenko, A.N. and Lel, V.V., Model of Self-Maintaining Evaporation Front for Superheated Liquids, Proc. Third Intern. Conf. on Multiphase Flow, Lyon, France, ICMF-98, June 8–12, no. 4, pp. 3–5, Prod. by file M-www.filem.com., 1998.

    Google Scholar 

  35. 35.

    Avksentyuk, B.P. and Ovchinnikov, V.V., Third Heat Transfer Crisis with Stepwise Heat Supply, J. Appl. Mech. Tech. Phys., 2001, vol. 42, pp. 857–863.

    ADS  Article  Google Scholar 

  36. 36.

    Aktershev, S.P. and Ovchinnikov, V.V., Model of Stationary Motion of Multiphase Surface in the Layer of Extremely Heated Liquid, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 2, pp. 47–55.

    Article  Google Scholar 

  37. 37.

    Okuyama, K., Kim, J., Mori, S., and Iida, Y., Boiling Propagation of Water on a Smooth Film Heater Surface, Int. J. Heat Mass Transfer, vol. 49,iss. 13/14, 2006, pp. 2207–2214.

    Article  Google Scholar 

  38. 38.

    Avksentyuk, B.P. and Ovchinnikov, V.V., Dynamics of Vaporization in Water, Sib. Fiz.-Tekh. Zh., 1992, no. 1, pp. 3–9.

    Google Scholar 

  39. 39.

    Avksentyuk, B.P. and Ovchinnikov, V.V., Heat Transfer Crisis in Water at Stepwise Power Genaration, Thermophys. Aeromech., 1999, vol. 6, no. 2, pp. 251–259.

    Google Scholar 

  40. 40.

    Pavlenko, A., Surtaev, A., and Tsoi, A., Development of Boiling Crisis Phenomena in Falling Films under Transient Heating, Proc. XXIX Siberian Thermophys. Sem., Novosibirsk, 2010, Sec. 4 (33), p. 9.

    Google Scholar 

  41. 41.

    Pavlenko, A.N., Tairov, A.A., Zhukov, V.E., Levin, A.A., and Tsoi, A.N., Investigation of Transitional Processes at Liquid Boiling under Non-Steady Heat Release, J. Eng. Thermophys., 2011, vol. 20, no. 4, pp. 1–27.

    Article  Google Scholar 

  42. 42.

    Aktershev, S.P. and Ovchinnikov, V.V., Modeling of the Vaporization Front on a Heater Surface, J. Eng. Thermophys., 2011, vol. 20, no. 1, pp. 77–88.

    Article  Google Scholar 

  43. 43.

    Kuznetsov, V.V., Kozulin, I. A., and Vitovsky, O.V., Experimental Investigation of Adiabatic Evaporation Waves in Superheated Refrigerants, J. Eng. Thermophys., 2012, vol. 21, no. 2, pp. 136–143.

    Article  Google Scholar 

  44. 44.

    Theofanous, T.G., Tu, J.P., Dinh, A.T., and Dinh, T.N., The Boiling Crisis Phenomenon, J. Exp. Thermal Fluid Sci., 2002, vol. 26, part I, pp. 775–792; part II, pp. 793–810.

    Article  Google Scholar 

  45. 45.

    Wagner, E. and Stephan, P., High-Resolution Measurements at Nucleate Boiling of Pure FC-84 and FC-3284 and Its Binary Mixtures, J. Heat Mass Transfer, 2009, vol. 131, pp. 121008-1–121008-12.

    Google Scholar 

  46. 46.

    Gerardi, C., Buongiorno, J., Hu, L., and McKrell, T., Study of Bubble Growth inWater Pool Boiling through Synchronized, Infrared Thermometry and High-Speed Video, Int. J. Heat Mass Transfer, 2010, vol. 53, pp. 4185–4192.

    Article  Google Scholar 

  47. 47.

    Kabov, O.A., Marchuk, I.V., and Chupin, V.M., Thermal Imaging Study of the Liquid Film Flowing on Vertical Surface with Local Heat Source, Russ. J. Eng. Thermophys., 1996, vol. 6, pp. 104–138.

    Google Scholar 

  48. 48.

    Lel, V.V., Stadler, H., Pavlenko, A.N., and Kneer, R., Evolution of Metastable Quasiregular Structures in Heated Wavy Liquid Films, J. Heat Mass Transfer, 2007, vol. 43, no. 11, pp. 1121–1132.

    Article  Google Scholar 

  49. 49.

    Lel, V.V., Kellermann, A., Dietze, G., Kneer, R., and Pavlenko, A.N., Investigations of the Marangoni Effect on the Regular Structures in Heated Wavy Liquid Films, Exp. Fluids, 2008, vol. 44, no. 2, pp. 341–354.

    Article  Google Scholar 

  50. 50.

    Chinnov, E.A. and Shatskii, E.N., Effect of Thermocapillary Perturbations on the Wave Motion in Heated Falling Liquid Film, Tech. Phys. Lett., 2010, vol. 36, pp. 53–56.

    ADS  Article  Google Scholar 

  51. 51.

    Skripov, V.P., Sinitsyn, E.N., Pavlov, I.A., et al., Teplofizicheskie svoistva zhidkostei v metastabilnom sostoyanii (Thermophysical Properties of Liquids in Metastable State), Moscow: Atomizdat, 1980.

    Google Scholar 

  52. 52.

    Pavlov, P.A., Dinamika vskipaniya silno peregretykh zhidkostei (Dynamics of Superheated Liquid Boiling), Sverdlovsk: UrO AN SSSR, 1988.

    Google Scholar 

  53. 53.

    Pavlenko, A.N., Surtaev, A.S., Zhukov, V.E., Koverda, V.P., Reshetnikov, A.V., and Mazheiko, N.A., Peculiarities of Superheated Liquid Discharging under Strong and Weak Nonequilibrium Conditions, J. Eng. Thermophys., 2010, vol. 19, no. 4, pp. 289–305.

    Article  Google Scholar 

  54. 54.

    Koverda, V.P., Skokov, V.N., and Skripov, V.P., 1/f—under Nonequilibrium Phase Transition. Experiment and Mathematical Model, ZhETF, 1998, vol. 113, no. 5, pp. 1748–1757.

    Google Scholar 

  55. 55.

    Koverda, V.P., Skokov, V.N., and Skripov, V.P., 1/f-Noise in Critical Nonequilibrium Phase Transition, ZhETF, 1996, vol. 63, no. 9, p. 739.

    Google Scholar 

  56. 56.

    Koverda, V.P. and Skokov, V.N., An Origin of 1/f Fluctuations at a Nonequilibrium Phase Transition, Phys. A, 1999, vol. 262, pp. 376–386.

    Article  Google Scholar 

  57. 57.

    Pavlenko, A.N., Matsekh, A.M., Pecherkin, N.I., Kneer, R., Lel, V.V., and Surtaev, A.S., Heat Transfer and Crisis Phenomena with Intense Boiling in the Falling Wave Liquid Films, Thermophys. Aeromech., 2006, vol. 13, no. 1, pp. 85–96.

    ADS  Article  Google Scholar 

  58. 58.

    Zeigarnik, Yu.A., Platonov, D.N., and Khodakov, K.A., Visualization of Boiling of Subcooled Water, High Temp., 2011, vol. 49, pp. 566–570.

    Article  Google Scholar 

  59. 59.

    Zhou, D., Gambaryan-Roisman, T., and Stephan, P., Measurement of Water Falling Film Thickness to Flat Plate Using Confocal Chromatic Sensoring Technique, Exp. Thermal Fluid Sci., 2009, vol. 33, no. 2, pp. 273–283.

    Article  Google Scholar 

  60. 60.

    Ebrardt, J. and Vernier, Ph., Optical Measurement of Water Superheat near a Rapidly Heated Wall at Atmospheric Pressure, Proc. Seventh Int. Heat Transfer Conf., Munchen, 1982, vol. 4, pp. 479–484.

    Google Scholar 

  61. 61.

    Sakurai, A. and Shiotsu, M., Transient Pool Boiling Heat Transfer, J. Heat Transfer, 1977, vol. 99, pp. 547–553.

    Article  Google Scholar 

  62. 62.

    Pavlenko, A.N., Starodubtseva, I.P., and Matsekh, A.M., The Effect of Boundary Conditions on Dynamics of Film Boiling Site Development, Thermophys. Aeromech., 2003, vol. 10, no. 4, pp. 591–606.

    Google Scholar 

  63. 63.

    Petukhov, B.S. and Kovalev, S.A., Measurement Methods and Some Results for the Critical Load at Transition from the Film to Nucleate Boiling, Therm. Eng., 1962, vol. 5, pp. 65–72.

    Google Scholar 

  64. 64.

    Zhukov, S.A. and Barelko, V.V., Nonuniform Steady States of the Boiling Process in the Transition Region between the Nucleate and Film Regimes, Int. J. Heat Mass Transfer, 1983, vol. 26, pp. 1121–1130.

    Article  Google Scholar 

  65. 65.

    Zhukov, S.A., Barelko, V.V., and Merzhanov, A.G., Wave Processes on Heat Generating Surfaces in Pool Boiling, Int. J. Heat Mass Transfer, 1980, vol. 24, no. 1, pp. 47–55.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pavlenko, A.N., Koverda, V.P., Reshetnikov, A.V. et al. Disintegration of flows of superheated liquid films and jets. J. Engin. Thermophys. 22, 174–193 (2013). https://doi.org/10.1134/S1810232813030028

Download citation

Keywords

  • Vapor Bubble
  • Critical Heat Flux
  • Boiling Heat Transfer
  • Engineer THERMOPHYSICS
  • Superheated Liquid