Skip to main content

Phenomenological models of microwave heating of a flat coal mass with release of absorbed heat by the convection law

Abstract

Phenomenological models of electrodynamics and heat transfer in application to microwave heating are constructed. Analytically rigorous solutions to problems of heating a flat coal mass under microwave radiation are obtained. The boundary conditions correspond to convection mechanism of absorbed heat release to the ambient medium. Mathematical models of dielectric heating for homogeneous boundary conditions are solved by a method of dual integral Laplace and Fourier transform. In the presence of inhomogeneities in the boundary conditions, a quite universal method of Green functions is used. The obtained formulas have a constraint associated with constancy of electro- and thermophysical characteristics of coal fuel, or when their piecewise constant approximation is admissible. The obtained dependences form the basis for scientific support of the microwave heating technology.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Investigation of the Drying Process in a High-Frequency Field, in Teplo- i massoobmen v kapillyarnoporistykh telakh (Heat and Mass Exchange in Capillary-Porous Bodies), Lykov, A.V. and Maksimov, G.A., Eds., Moscow: Gosenergoizdat, 1957, pp. 133–142.

  2. 2.

    Didenko, A.N., SVCh-energetika: teoriya i praktika (Microwave Power Engineering: Theory and Practice), Moscow: Nauka, 2003.

    Google Scholar 

  3. 3.

    Didenko, A.N. and Zverev, B.V., SVCh-energetika (Microwave Power Engineering), Moscow: Nauka, 2000.

    Google Scholar 

  4. 4.

    Microwave Power Engineering, Okress, E.C., Ed., 3 vols., New York: Academic Press, 1968.

    Google Scholar 

  5. 5.

    Puschner, H., Heating withMicrowaves: Fundamentals, Components and Circuit Technique, NewYork: Springer-Verlag, 1966.

    Google Scholar 

  6. 6.

    Konovalov, N.P., Tekhnologiya destruktsii burykh uglei metodom nagreva energiei sverkhvysokoi chastoty (Technology of Brown Coal by Microwave Heating), Irkutsk: IrGTU, 2000.

    Google Scholar 

  7. 7.

    Salomatov, V.V., Sladkov, S.O., and Pashchenko, S.E., Microwave Technologies in Coal Power Engineering, Inzh.-Fiz. Zh., 2012, vol. 85, no. 3, pp. 535–549.

    Google Scholar 

  8. 8.

    Ivanitskii, V.V., The Possibility of Applying Microwave Methods of Heating of Materials, Izv. Vyssh. Uch. Zaved., Probl. Poligraf. Izd. Dela, 2000, nos. 3/4, pp. 42–46.

    Google Scholar 

  9. 9.

    Semenov, A.S., SVCh energiya i ee primenenie. Osobennosti, oborudovanie, tekhnologicheskie protsessy (Microwave Energy with Applications. Special Features, Equipment and Technological Processes), Semenov, A.S. and Baiburin, V.B., Eds., Saratov: Saratov Univ., 1999.

  10. 10.

    Seyhum, N., Ramaswany, H., Sumnu, G., and Ahmed, J., Comparison and Modeling of Microwave Tempering and Infrared Assisted Microwave Tempering of Frozen Potato Puree, J. Eng., 1992, pp. 339–344.

    Google Scholar 

  11. 11.

    Chemkhi, S., Zagrouba, F., and Bellagi, A., Modeling and Simulation of Drying Phenomena with Rheological Behavior, Brazilian J. Chem. Eng., 2005, vol. 22, no. 2, pp. 153–163.

    Article  Google Scholar 

  12. 12.

    Kolomeitsev, V.A., Mikrovolnovye sistemy s ravnomernym ob’emnym nagrevom (Microwave Systems with Uniform Volumetric Heating), Kolomeitsev, V.A. and Komarov, V.V., Eds., Saratov: SGTU, 1998.

  13. 13.

    Vysokochastotnyi nagrev dielektrikov i poluprovodnikov (RF Heating of Dielectrics and Semiconductors), Netushil, A.V. et al., Eds., 2nd ed., Moscow: Gosenergoizdat, 1959.

    Google Scholar 

  14. 14.

    Arkhangelskii, Yu.S. and Devyatkin, I.I., Sverkhvysokochastotnye nagrevatelnye ustanovki dlya intensifikatsii tekhnologicheskikh protsessov (Microwave Heating Devices for Intensification of Technological Processes), Saratov: Saratov Univ., 1983.

    Google Scholar 

  15. 15.

    Ruginets, R.G. and Kilkeev, R.Sh., Localization of Heat Release in Dielectrics under Microwave Electromagnetic Field, IFZh, 1989, vol. 56, no. 4, pp. 645–650.

    Google Scholar 

  16. 16.

    Ruginets, R.G., Brykov, S.K., and Lokharu, E.Kh., Thermal Conditions in Microwave Heating of Dielectrics, IFZh, 1990, vol. 59, no. 5, pp. 853–858.

    Google Scholar 

  17. 17.

    Rikenglaz, L.E., To the Theory of Dielectrics Heating by High-Power Electromagnetic Fields, Inzh. Fiz. Zh., 1974, vol. 27, no. 6, pp. 1061–1068.

    Google Scholar 

  18. 18.

    Anfinogentov, V.I., Matematicheskoe modelirovanie SVCh nagreva dielektrikov (Mathematical Modeling of Dielectrics Heating with Microwaves), Kazan: Kazan. Gos. Tekhn. Univ., 2006.

    Google Scholar 

  19. 19.

    Anfinogentov, V.I., Garaev, T.K., and Morozov, G.A., Ob odnoi zadache teorii SVCh nagreva dielectrikov (On One Problem of the Theory of Microwave Heating of Dielectrics), Vestnik KGTU, 2002, no. 3.

    Google Scholar 

  20. 20.

    Khaidurova, A.A. et al., Microwave Drying of Brown Coals and Improvement of Their Technological Characteristics, Izv. Vuzov, Probl. Energ., 2010, nos. 1/2, pp. 31–35.

    Google Scholar 

  21. 21.

    Khaidurova, A.A. et al., Vozdeistviemikrovolnovoi energii na buryi ugol’ dlya uluchsheniya ego tekhnologicheskikh kharakteristik. Teplofizicheskie osnovy energeticheskikh tekhnologii (Thermophysical Bases of Power Technologies), Tomsk: TPU, 2009, pp. 109–113.

    Google Scholar 

  22. 22.

    Kartashov, E.M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel (Analytical Methods in the Theory of Thermal Conductivity of Solids), Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  23. 23.

    Lykov, A.V., Teoriya teploprovodnosti (Theory of Thermal Conductivity), Moscow: Vysshaya Shkola, 1967.

    Google Scholar 

  24. 24.

    Butkovskii, A.G., Kharakteristiki sistem s raspredelennymi parametrami (Characteristics of Systems with Distributed Parameters), Moscow: Nauka, 1979.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Salomatov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salomatov, V.V., Sladkov, S.O., Pashchenko, S.E. et al. Phenomenological models of microwave heating of a flat coal mass with release of absorbed heat by the convection law. J. Engin. Thermophys. 22, 134–142 (2013). https://doi.org/10.1134/S1810232813020057

Download citation

Keywords

  • Green Function
  • Microwave Radiation
  • Phenomenological Model
  • Microwave Heating
  • Homogeneous Boundary Condition