Skip to main content

Utilization of phase change materials (PCM) for energy recovery in the steelmaking industry


The purpose of this study is to evaluate the possibility of recovery of energy, efficiently, from the off-gases of an Electric Arc Furnace (EAF). The system adopted provides the utilization of a phase change materials (PCMs) apparatus matched with an Organic Rankine Cycle (ORC) for electrical energy production. The solution proposed allows reduction of the temperature and mass flow rate variability of the off-gases. Results show an excellent reduction of the range of wall-temperatures, close to the off-gases and a relevant energy recovery.

This is a preview of subscription content, access via your institution.


  1. 1.

    Kleimt, B., Köhle, S., Kühn, R., and Zisser, S., Application of Models for Electrical Energy Consumption to Improve EAF Operation and Dynamic Control, Proc. 8th European Electric Steelmaking Conf., Birmingham, 2005, pp. 183–197.

    Google Scholar 

  2. 2.

    Balladino, W., Nardin, G., Pozzetto, D., and Tommasi, S., Ricerca sperimentale sulla fattibilità del recupero energetico e sul controllo antinquinamento nel forno elettrico ad arco durante le fasi di fusione e di affinazione, 2nd European Electric Steel Congress, Florence, 1986.

    Google Scholar 

  3. 3.

    Jones, J., Understanding Electric Arc Furnace Operations, Tech Commentary, EPRI Center for Materials Production (CMP), 1997.

    Google Scholar 

  4. 4.

    De Beer, J., Worrel, E., and Blok, K., Long Term Energy Efficiency Improvements in the Iron and Steel Industry, Panels of the ECEEE 1995 Summer Study (Panel 3), 1995.

    Google Scholar 

  5. 5.

    Mehling, H. and Cabeza, L., Heat and Cold Storage with PCM, Springer, 2008.

    Google Scholar 

  6. 6.

    Abhat, A., Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials, Solar Energy, 1983, vol. 30, pp. 313–332.

    ADS  Article  Google Scholar 

  7. 7.

    Zalba, B., Marìn, J.M., Cabeza, L.F., and Mehling, H., Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Therm. Eng., 2003.

    Google Scholar 

  8. 8.

    Mehling, H., Cabeza, L.F., Hippeli, S., and Hiebler, S., PCM-Module to Improve Hot Water Heat Stores with Stratification, Renewable Energy, 2003, vol. 28, pp. 699–711.

    Article  Google Scholar 

  9. 9.

    Ravikumar, M. and Srinivasan, Dr. Pss., Phase Change Material as a Thermal Energy Storage for Cooling of Building, J. Theor. Appl. Inform. Technol., 2008.

    Google Scholar 

  10. 10.

    Heinz, A. and Streicher, W., Application of Phase Change Materials and PCM-Slurries for Thermal Energy Storage, Institute of Thermal Engineering, Graz University of Technology, 2006.

    Google Scholar 

  11. 11.

    Öttinger, O., PCM/Graphitverbund-Produkte für Hochleistungswärmespeicher, ZAE Symposium, Wärmeund Kältespeicherung mit Phasenwechselmaterialien (PCM), München, 2004.

    Google Scholar 

  12. 12.

    Cabeza, L., Storage Techniques with Phase Change Materials, Thermal Energy Storage for Solar and Low Energy Buildings, State of the Art by the IEA Solar Heating and Cooling Task 32, 2005, pp. 77–105.

    Google Scholar 

  13. 13.

    Maruoka, N. and Akiyama, T., Development of PCM for High Temperature Application in the Steelmaking Industry, Dept. Chem. Eng., Graduate School of OSAKA Prefecture University, 2006.

    Google Scholar 

  14. 14.

    Nishimori, H. and Ortiz, G., Elements of Phase Transitions and Critical Phenomena, OxfordUniversity Press, 2011.

    MATH  Google Scholar 

  15. 15.

    Alexiades, V. and Solomon, D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing Corporation, 1993.

    Google Scholar 

  16. 16.

    Fasano, A. and Primicerio, M., Il Problema di Stefan con condizioni al contorno non lineari, Scuola Normale Superiore Pisa, 1972.

    Google Scholar 

  17. 17.

    Ansys Fluent Theory Guide 12.0, Ansys, 2009.

  18. 18.

    Comini, G., Croce, G., and Nobile, E., Fondamenti di Termofluidodinamica Computazionale, SGE Padova, 2004.

    Google Scholar 

  19. 19.

    Voller, V.R. and Swaminathan, C.R., Generalized Source-Based Method for Solidification Phase Change Numer, Heat Transfer B, 1991, vol. 19, no. 2, pp. 175–189.

    ADS  Article  Google Scholar 

  20. 20.

    ECO-D Environmental Systems Srl, Udine (Italy),

  21. 21.

    Data available at

  22. 22.

    Sobolev, V., Thermophysical Properties of Lead and Lead-Bismuth Eutectic, Elsevier J. NuclearMaterials, 2007.

    Google Scholar 

  23. 23.

    Nicodemi, W., Acciai e Leghe non Ferrose, Zanichelli, 2004.

    Google Scholar 

  24. 24.

    Miliozzi, A., Giannuzzi, G.M., Taquini, P., and La Barbera, A., Fluido Termovettore: Dati di Base Della Miscela di Nitrati di Sodio e Potassio, ENEA, 2001.

    Google Scholar 

  25. 25.

    Incropera, F.P., Bergman, T.L., Lavine, A.S., and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, 2011.

    Google Scholar 

  26. 26.

    Comini, G. and Cortella, G., Fondamenti di Trasmissione del Calore, SGE Padova, 2005.

    Google Scholar 

  27. 27.

    Smith, T.F., Shen, Z.F., and Friedman, J.N., Evaluation of Coefficients for theWeighted Sum of Grey Gases Model, 20th National Heat Transfer Conf., Milwaukee, WI, 1981.

    Google Scholar 

  28. 28.

    Rhine, J.M. and Tucker, R.J., Modeling of Gas-Fired Furnaces and Boilers, McGraw-Hill, 1991.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. Saro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saro, O., De Angelis, A., D’Elia, S. et al. Utilization of phase change materials (PCM) for energy recovery in the steelmaking industry. J. Engin. Thermophys. 22, 93–110 (2013).

Download citation


  • Emissivity
  • Mushy Zone
  • Phase Change Material
  • Thermal Energy Storage