Skip to main content
Log in

A comparative study of the performance of high-resolution non-oscillating advection schemes in the context of the motion induced by mixed region in a stratified fluid

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The problem of a two-dimensional fully mixed region collapsing in continuously density-stratified medium is considered. This article deals with the numerical treatment of the advective terms in the Navier-Stokes equations in the Oberbeck-Boussinesq approximation. Comparisons are performed between the upwind scheme, flux-limiter schemes, namely, Minmod, Superbee, Van Leer, and Monotonized Centred (MC), the monotone adaptive stencil schemes, namely, ENO3 and SMIF, and weighted stencil scheme WENO5. We used laboratory experimental data of Wu as a benchmark test to compare performance of different numerical approaches. It is found that the flux-limiter schemes have the smallest numerical diffusion. The WENO5 scheme describes more accurately the width of collapse region variation with time. All considered schemes give a realistic pattern of internal gravity waves generated by collapse region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, J.S., Buoyancy Effects in Fluids, Cambridge: Cambridge Univ. Press, 1973.

    MATH  Google Scholar 

  2. Fedorov, K.N., Tonkaya termokhalinnaya struktura vod okeana (Fine Thermohaline Structure of Oceanic Water), Leningrad: Gidrometeoizdat, 1976.

    Google Scholar 

  3. Monin, A.S. and Ozmidov, R.V., Okeanicheskaya turbulentsiya (Oceanic Turbulence), Leningrad: Gidrometeoizdat, 1981.

    Google Scholar 

  4. Maderich, V.S., Nikishov, V.I., and Stetsenko, A.G., Internal Mixing Dynamics in a Stratified Medium, Kiev: Naukova Dumka, 1988.

    Google Scholar 

  5. Lighthill, J., Waves in Fluids, Cambridge Univ. Press, 2nd ed., 2002.

  6. Munroe, J.R., Voegeli, C., Sutherland, B.R., Birman, V., and Meiburg, E.H., Intrusive Gravity Currents from Finite-Length Locks in a Uniformly Stratified Fluid, J. Fluid Mech., 2009, vol. 635, pp. 245–273.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Gilreath, H.E. and Brandt, A., Experiments on the Generation of Internal Waves in a Stratified Fluid, AIAA J., 1985, vol. 23, pp. 693–700.

    Article  ADS  Google Scholar 

  8. Voropaeva, O.F. and Chernykh, G.G., Internal Waves Generated by Momentumless Turbulent Wake in a Linearly Stratified Fluid, Mat. Model., 1998, vol. 10, no. 6, pp. 75–89.

    Google Scholar 

  9. Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., Internal Waves Generated by Turbulent Wakes in a Stably Stratified Medium, Dokl. Phys., 2003, vol. 48, no. 9, pp. 517–521.

    Article  ADS  MathSciNet  Google Scholar 

  10. Moshkin, N.P., Chernykh, G.G., and Fomina, A.V., On the Influence of Small Total Momentum Imbalance on Turbulent Wake Dynamics in the Linearly Stratified Medium, Mat. Model., 2005, vol. 17, no. 1, pp. 19–33.

    MATH  Google Scholar 

  11. Wu, J., Mixed Region Collapse with Internal Wave Generation in a Density-Stratified Medium, J. Fluid. Mech., 1969, vol. 35,pt. 3, pp. 531–544.

    Article  ADS  Google Scholar 

  12. Wessel, W.R., Numerical Study of the Collapse of a Perturbation in an Infinite Density Stratified Fluid, Phys. Fluids, 1969, vol. 12, no. 12, pt. 2, pp. 170–176.

    Article  ADS  Google Scholar 

  13. Lytkin, Yu.M. and Chernykh, G.G., On Internal Waves Induced by the Mixing Zone Collapse in a Stratified Fluid, in Mathematical Problems of Mechanics (Continuum Dynamics), vol. 22, Novosibirsk: Inst. of Hydrodynamics, SB USSR Akad. Sci., Novosibirsk, 1975, pp. 116–132.

    Google Scholar 

  14. Gushchin, V.A., The Splitting Method for Problems of the Dynamics of an Inhomogeneous Viscous Incompressible Fluid, USSR Comput. Math. Math. Phys., 1981, vol. 21,iss. 4, pp. 190–204.

    Article  MATH  MathSciNet  Google Scholar 

  15. Babakov, A.V., Application of Flow Theory to a Problem of the Dynamics of a Viscous Stratified Fluid, USSR Comput. Math. Math. Phys., 1983, vol. 23,iss. 2, pp. 115–119.

    Article  MATH  MathSciNet  Google Scholar 

  16. Nartov, V.P. and Chernykh, G.G., On Numerical Modeling of Fluid Flow Generated by Collapse of Mixed Region in Stratified Medium, Preprint of Inst. of Theoretical and Applied Mechanics, SB RAS, Novosibirsk, 1982.

    Google Scholar 

  17. Vorozhtsov, E.V. and Yanenko, N.N., Methods for the Localization of Singularities in Numerical Solutions of Gas Dynamics Problems, New York: Springer, 1989.

    Google Scholar 

  18. Chernykh, G.G. and Voropaeva, O.F., On Numerical Modeling of Local Density Perturbation Dynamics Using Moving Grids, J. Eng. Therm. (in press).

  19. Hirsch, Ch., Numerical Computation of Internal and External Flows, vol. 2, Computational Methods for Inviscid and Viscous Flows,Wiley, 1991.

  20. Chung, T.J., Computational Fluid Dynamics, Cambridge: Cambridge Univ. Press, 2009.

    Google Scholar 

  21. Boris, J.P. and Book, D.L., Flux-Corrected Transport, J. Comp. Phys., 1973, vol. 11, pp. 38–69.

    Article  MATH  ADS  Google Scholar 

  22. Chorin, A.J., Numerical Simulation of the Navier-Stokes Equations, Math. Comp., 1968, vol. 22, pp. 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  23. Temam, R., Une Methode d’Approximation des Solutions des Equations Navier-Stokes, Bull. Soc. Math. France, 1968, vol. 98, pp. 115–152.

    MathSciNet  Google Scholar 

  24. Yanenko, N.N., The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables, New York: Springer, 1971.

    MATH  Google Scholar 

  25. Brown, D., Cortez, R., and Minion, M.I., Accurate Projection Methods for the Incompressible Navier-Stokes Equations, J. Comp. Phys., 2001, vol. 168, pp. 464–499.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Harten, A., High-Resolution Schemes for Hyperbolic Conservation Laws, J. Comp. Phys., 1983, vol. 49, pp. 357–393.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. LeVeque, R.J., High-Resolution Conservative Algorithms for Advection in Incompressible Flow, SIAM J. Num. Anal., 1996, vol. 33, pp. 627–665.

    Article  MATH  MathSciNet  Google Scholar 

  28. Roe, B., Some Contributions to the Modeling of Discontinuous Flows, Lect. Notes Appl. Math., 1985, vol. 22, pp. 163–193.

    MathSciNet  Google Scholar 

  29. Roe, B. and Sidilkover, D., Optimum Positive Linear Schemes for Advection in Two and Three Dimensions, SIAM J. Num. Anal., 1992, vol. 29, pp. 1542–1568.

    Article  MATH  MathSciNet  Google Scholar 

  30. Van Leer, B., Towards the ULTIMATE Conservation Difference Scheme, II, Monotonicity and Conservation Combined in a Second-Order Scheme, J. Comp. Phys., 1974, vol. 14, pp. 361–370.

    Article  MATH  ADS  Google Scholar 

  31. Van Leer, B., Towards the ULTIMATE Conservation Difference Scheme, IV, A New Approach to Numerical Convection, J. Comp. Phys., 1977, vol. 23, pp. 276–299.

    Article  MATH  ADS  Google Scholar 

  32. Shu, C.-W., Essentially Nonoscillatory and Weighted Essentially Nonoscillatory Schemes for Hyperbolic Conservation Laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Quarteroni, A., Ed., Berlin: Springer, 1998, vol. 1697, pp. 325–432.

    Chapter  Google Scholar 

  33. Harten, A., Engquist, B., Osher, S., and Chakravarthy, S.,UniformlyHigh-Order Accurate Essentially Non-Oscillatory Schemes, III, J. Comp. Phys., 1987, vol. 71, pp. 231–303.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Gushchin, V.A. and Konshin, V.N., Computational Aspects of the Splitting Method for Incompressible Flow with a Free Surface, Comp. Fluids, 1992, vol. 21, pp. 345–353.

    Article  MATH  ADS  Google Scholar 

  35. Gushchin, V.A. and Matyushin, P.V., Numerical Simulation of Separated Flow Past a Sphere, Comp. Math. Math. Phys., 1997, vol. 37, 1086–1100.

    MathSciNet  Google Scholar 

  36. Belotserkovskii, O.M., Mathematical Modeling in Informatics: Numerical Simulation in the Mechanics of Continuous Media,Moscow: Moscow State University of Printing Arts, 1997.

    Google Scholar 

  37. Amsden, A.A. and Harlow, F.H., The SMAG Method, Los Alamos Sci. Lab. Rept., LA–4370, 1970.

  38. Fortin, M., Peyret, R., and Temam, R., Resolutions Numeriques des Equations de Navier-Stokes pour un Fluid Incompressible, J. de Mecanidue, 1971, vol. 3, no. 10, p. 357.

    MathSciNet  Google Scholar 

  39. Zhang, Rui, Zhang, Mengping, and Shu, Chi-Wang, On the Order of Accuracy and Numerical Performance of Two Classes of Finite Volume WENO Schemes, Comm. Comp. Phys., 2011, vol. 9, pp. 807–827.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Moshkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshkin, N.P., Narong, K. & Chernykh, G.G. A comparative study of the performance of high-resolution non-oscillating advection schemes in the context of the motion induced by mixed region in a stratified fluid. J. Engin. Thermophys. 20, 468–486 (2011). https://doi.org/10.1134/S1810232811040114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232811040114

Keywords

Navigation