Skip to main content
Log in

Investigation of transient processes at liquid boiling under nonstationary heat generation conditions

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents results on experimentally investigated dynamics of boiling development and formation of film boiling zones under stepwise heat generation on a horizontally and vertically oriented cylindrical surface in a large volume of Freon-21. Experimental data on the expectation time and boiling temperature, the propagation velocity and structure of evaporation and boiling fronts for different heat flux density both in saturated liquid and in subcooling conditions are obtained. Results of experiments on investigating the nucleation forms under development of nonstationary heat release crisis caused by heat loading on the vertical heater immersed into the volume of liquid (water, ethanol) subcooled to saturation temperature are presented. A calculation ratio for determining the expectation time to the beginning of intense vaporization in water is proposed and compared with experimental data obtained on surfaces with different-size roughness. Peculiarities of evolution of evaporation fronts from incipient bubbles are investigated in the experiments with ethanol. Data on the evaporation front velocity as a function of wall overheating are obtained. The obtained experimental data on the propagation velocity of self-sustained evaporation fronts are compared with the known calculated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okuyama, K., Takehara, R., Iida, Y., and Kim, J., Pumping Action by Boiling Propagation in aMicrochannel, Microscale Thermophys. Eng., 2005, vol. 9, no. 2, pp. 119–135.

    Article  Google Scholar 

  2. Huai, X., Wang, G., Jin, R., Yin, T., and Zou, Y., Microscopic Explosive Boiling Induced by a Pulsed-Laser Irradiation, Heat Mass Transfer, 2008, vol. 45, pp. 117–126.

    ADS  Google Scholar 

  3. Al’tov, V.A., Zenkevich, V.B., Kremlev, M.G., and Sychev, V.V., Stabilization of Superconducting Magnetic Systems, Sychev, V.V., Ed., 3d ed., Moscow: MEI, 2008.

    Google Scholar 

  4. Pavlenko, A.N. and Chekhovich, V.Yu., Critical Heat Flux in Liquid under Nonstationary Heat Generation, Izv. SO AN SSSR, Ser. Tekh. Nauk, 1990, vol. 2, pp. 3–9.

    Google Scholar 

  5. Pavlenko, A.N., Transitional Processes and Crisis Phenomena in Boiling of Cryogenic Liquids, Selected Transactions of NATO Advanced Study Institute, Mathematics, Physics and Chemistry, NATO Science Series, Netherlands: Kluwer, 2003, vol. 99, pp. 145–164.

    Google Scholar 

  6. Terner, E., Shock Tube Experiments Involving Phase Changes, Ind. Eng. Chem. Process Design Devel., 1962, vol. 1, no. 2, pp. 84–89.

    Article  Google Scholar 

  7. Gromles, M.A. and Fauske, H.K., Axial Propagation of Free Surface Boiling into Superheated Liquids in Vertical Tubes, Proc. Fifth Int. Heat Transfer Conf., London, 1974, vol. 4, pp. 30–34.

    Google Scholar 

  8. Shuravenko, N.A., Isaev, O.A., and Skripov, V.P., Explosive Incipience of Superheated Liquid upon Exhaustion through Short Pipes, Teplofiz. Vys. Temp., 1975, vol. 13, no. 4, pp. 896–898.

    Google Scholar 

  9. Borkar, G.S., Lienhard, J.H., and Trela, M.A., Rapid Hot-Water Depressurization Experiment, Report EPRI NP-527 Project RP687-1, 1977.

  10. Reshetnikov, A.V., Isaev, O.A., and Skripov, V.P., Critical Flow-Rates of a Boiling Liquid and a Condensing Gas in a Nonequilibrium Discharge Regime, High Temp., 1988, vol. 26, no. 3, pp. 405–409.

    Google Scholar 

  11. Reshetnikov, A.V., Isaev, O.A., and Skripov, V.P., Flow-Rate of Boiling Liquid on Issuing into Atmosphere-Conversion from Model Material toWater, High Temp., 1988, vol. 26, no. 4, pp. 598–601.

    Google Scholar 

  12. Bartak, J., A Study of the Rapid Depressurization of Hot-Water and the Dynamics of Vapor Bubble Generation in Superheated Liquid, Int. J. Multiphase Flow, 1990, vol. 16, pp. 789–798.

    Article  MATH  Google Scholar 

  13. Kurschat, Th., Chaves, H., and Meier, G.E., Complete Adiabatic Evaporation of Highly Superheated Liquid Jets, J. Fluid Mech., 1992, vol. 236, pp. 43–59.

    Article  ADS  Google Scholar 

  14. Bilicki, Z., Mathematical Model of Rapid Depressurization with Evaporation of a Liquid, Proc. Second Int. Conf. on Heat Transfer and Transport Phenomena in Multiphase Systems, Kielce, Poland, May 18–22, 1999, pp. 35–44.

  15. Aamir, M.F. and Watkins, A.P., Numerical Analysis of Depressurization of Highly Pressurized Liquid Propane, Int. J. Heat Fluid Flow, 2000, no. 21, pp. 420–431.

  16. Reinke, P. and Yadigaroglu, G., Explosive Vaporization of Superheated Liquids by Boiling Fronts, Int. J. Multiphase Flow, 2001, vol. 27, no. 9, pp. 1487–1516.

    Article  MATH  Google Scholar 

  17. Simous-Moreira, J.R., Vieira, M.M., and Angelo, E., Highly Expanded Flashing Liquid Jets, J. Thermophys. Heat Transfer, 2002, vol. 16, no. 3, pp. 415–424.

    Article  Google Scholar 

  18. Bohdal, T. and Kuczynski, W., Investigation of Boiling of Refrigeration Medium under Periodic Disturbance Conditions, Exp. Heat Transfer, 2005, vol. 18, pp. 135–151.

    Article  ADS  Google Scholar 

  19. Bohdal, T. and Kuczynski, W., Boiling of Refrigerant under Periodic Disturbance Conditions, Proc. 5th Int. Conf. on Transport Phenomena in Multiphase Systems, June 30–July 3, 2008, Bialystok, Poland, vol. 2, pp. 1–8

  20. Polanco, G., Hold, A.E., and Munday, G., General Review of Flashing Jet Studies, J. Hazardous Mat., 2010, no. 173, pp. 2–18.

  21. Avksentyuk, B.P. and Ovchinnikov, V.V., Evaporation Front and Flashing Effects, Proc. Fifth Russian National Conf. on Heat Exchange, Moscow, 2006, vol. 4, pp. 37–40.

    Google Scholar 

  22. Reshetnikov, A.V., Mazheiko, N.A., and Skripov, V.P., Jets of Incipient Liquids, J. Appl. Mech. Techn. Phys., 2000, no. 41, pp. 491–497.

  23. Reshetnikov, A.V., Mazheiko, N.A., Skokov, V N., and Koverda, V.P., Nonequilibrium Phase Transitions in the Jet of Highly Superheated Liquid, High Temp., 2007, vol. 45, no. 6, pp. 268–274.

    Article  Google Scholar 

  24. Pavlenko, A.N., Koverda, V.P., Reshetnikov, A.V., Mazheiko, N.A., Surtaev, A.S., and Zhukov, V.E., Peculiarities of Superheated Liquid Discharging under Strong and Weak Nonequilibrium Conditions, J. Eng. Therm., 2010, vol. 19, no. 4, pp. 289–305.

    Article  Google Scholar 

  25. Clarke, H., Martinez-Herasme, A., Crookes, R., and Wen, D.S., Experimental Study of Jet Structure and Pressurization upon Liquid Nitrogen Injection into Water, Int. J. Multiphase Flow, 2010, vol. 36, iss. 11/12, pp. 940–949.

    Article  Google Scholar 

  26. Jackson, J.E., Borgmeyer, B.V., Wilson, C.A., Cheng, P., and Bryan J.E., Characteristics of Nucleate Boiling with Gold Nanoparticles in Water, Proc. IMECE 2006, Chicago, USA, November 5–10, 2006.

  27. Bang, I.C., Buongiorno, J., and Hu, L.W., Surface Wettability Change during Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux, Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 4105–4116.

    Article  Google Scholar 

  28. Dominguez-Ontiveros, E., Estrada-Perez, C., Fortenberry, S., and Hassan, Y., Experimental Observation and Flow Measurements Using PIV of Pool Boiling with Nanofluids, Conf. on Multiphase Flow, ICMF, Leipzig, Germany, July 9–13, 2007, p. 309.

  29. Moreno, G., Jr., Oldenburg, S., You, S.M., and Kim, J.H., Pool Boiling Heat Transfer of Alumina-Water, Zinc Oxide-Water and Alumina-Water Ethylene Glycol Nanofluids, Proc. HT2005, July 17–22, San Francisco, California, 2005.

  30. Kim, H., Buongiorno, J., Hu, L., McKrell, T., and DeWitt, G., Experimental Study on Quenching of a Small Metal Sphere in Nanofluids, Proc. Int. Mech. Eng. Congress, IMECE 2008-67788, Boston, USA, 2008.

  31. Bang, I.C., Buongiorno, J., Hu, L.W., and Wang, H., Measurement of Key Pool Boiling Parameters in Nanofluids for Nuclear Applications, J. Power Energy Systems, 2008, vol. 2, no. 1, pp. 340–351.

    Article  ADS  Google Scholar 

  32. Fokin, B.S., Belenkiy, M.Ya., Almyashev, V.I., Habenskiy, V.B., Almyasheva, O.V., and Gusarov, V.V., Critical Heat Flux at Boiling of Water Dispersions of Nanoparticles, Techn. Phys. Lett., 2009, vol. 35, no. 10, pp. 1–5.

    Google Scholar 

  33. Avksentyuk, B.P., Bobrovich, G.I., Kutateladze, S.S., and Moskvicheva, V.N., On Degeneration of Bubble Boiling in Conditions of Free Convection, Zh. Prikl. Mekh. Tekhn. Fiz., 1972, no. 1, pp. 69–72.

  34. Avksentyuk, B.P., Ovchinnikov, V.V., and Plotnikov, V.Ya., Dynamics of Liquid Boiling in the Range of High Overheating, Materials of All-Union Conf. on Heat Exchange in Vapor Generators, Novosibirsk, ITF AN SSSR, 1988, pp. 304–308.

    Google Scholar 

  35. Avksentyuk, B.P., Ovchinnikov, V.V., and Plotnikov, V.Ya., Self-Sustained Boiling Front, Izv. SO AN SSSR, Ser. Tekh. Nauk, 1989, no. 2, iss. 2, pp. 17–23.

  36. Avksentyuk, B.P. and Ovchinnikov, V.V., On the Dynamics of Vaporization in Water, Sib. Fiz.-Tekh. Zh., 1992, no. 1, pp. 3–9.

  37. Avksentyuk, B.P., Ovchinnikov, V.V., and Plotnikov, V.Ya., Dynamic Effects on Interphase Surface during the Disintegration of Superheated Near-Wall Liquid, Proc. Int. Conf. on Heat Mass Transfer, 1991, vol. 33, pp. 583–598.

    Google Scholar 

  38. Avksentyuk, B.P. and Ovchinnikov, V.V., A Study of Evaporation Structure at High Superheatings, Russ. J. Eng. Therm., 1993, vol. 3, pp. 21–39.

    Google Scholar 

  39. Avksentyuk, B.P. and Ovchinnikov, V.V., Investigation of the Effect of Undercooling on the Third Heat Transfer Crisis, Proc. Fourth Russian National Conf. on Heat Exchange,Moscow, 2006, vol. 4, pp. 33–36.

    Google Scholar 

  40. Sinha, D.N., Brodie, L.C., Semura, J.S., and Young, F.M., Premature Transition to Stable Film Boiling Initiated by Power Transients in Liquid Nitrogen, Cryogenics, 1979, vol. 19, pp. 225–229.

    Article  Google Scholar 

  41. Tsukamoto, O. and Uemura, T., Observation of Bubble Formation Mechanism of Liquid Nitrogen Subjected to Transient Heating, Adv. Cryog. Eng., 1980, vol. 25, pp. 476–482.

    Google Scholar 

  42. Pavlenko, A.N. and Chekhovich, V.Yu., Crisis of Heat Transfer under Nonstationary Heat Generation in Cryogenic Liquid, Materials of All-Union Workshop on Modern Problems of Thermophysics, Novosibirsk, ITF AN SSSR, 1984, pp. 5–15.

    Google Scholar 

  43. Pavlenko, A.N. and Chekhovich, V.Yu., Investigation of Heat Transfer Crisis in Nonstationary Heat Generation, Kipenie i kondensatsiya (Boiling and Condensation), Novosibirsk, IT SO RAN, 1986, pp. 66–85.

    Google Scholar 

  44. Okuyama, K., Kozawa, Y., Inoue, A., et al., Transient BoilingHeat Transfer Characteristics of R 113 at Large Stepwise Heat Generation, Int. J. Heat Mass Transfer, 1988, vol. 31, no. 10, pp. 2161–2174.

    Article  Google Scholar 

  45. Okuyama, K. and Iida, Y., Transient Boiling Heat Transfer Characteristics of Nitrogen (Bubble Behavior and Heat Transfer Rate at Stepwise Heat Generation), Int. J. HeatMass Transfer, 1990, vol. 33, pp. 2065–2071.

    Article  Google Scholar 

  46. Pavlenko, A.N. and Lel, V.V., Approximate Simulation Model of a Self-Sustaining Evaporating Front, Thermophys. Aeromech., 1999, vol. 6, no. 1, pp. 105–117.

    Google Scholar 

  47. Skripov, V.P., Metastable Liquids, New York: Wiley, 1974.

    Google Scholar 

  48. Tolubinskii, V.I., Teploobmen pri kipenii (Heat Transfer in Boiling), Kiev: Naukova Dumka, 1980.

    Google Scholar 

  49. Iida, Y., Okuyama, K., and Sakurai, K., Boiling Nucleation on a Very Small Film Heater Subjected to Extremely Rapid Heating, Int. J. Heat Mass Transfer, 1994, vol. 37, pp. 2771–2780.

    Article  Google Scholar 

  50. Pokusaev, B.G., Tairov, E.A., Kazenin, D.A., and Syskov, L.V., Investigation of Undercooled Water Boiling under Pulse Heat Generation, Teplomassoobmen, MMF-2000, vol. 5, pp. 77–86.

  51. Tairov, E.A., Pokusaev, B.G., and Gritsenko, M.Yu., Experimental investigation of the Onset of Explosive Water Boiling with Growing Wall Temperature, Proc. Third Russian National Conf. on Heat Transfer, Moscow, 2002, vol. 4, pp.177–180.

    Google Scholar 

  52. Avksentyuk, B.P. and Ovchinnikov, V.V., Third Heat Transfer Crisis with Stepwise Heat Supply, J. Appl. Mech. Tech. Phys., 2001, vol. 42, no. 5, pp. 143–151.

    Article  Google Scholar 

  53. Skripov, V.P., Sinitsin, E.N., Pavlov, P.A., et al., Thermophysical Properties of Liquids in a Metastable State, Moscow: Atomizdat, 1980.

    Google Scholar 

  54. Theofanous, T.G. and Yuen, W.W., Fundamentals of Boiling and Multiphase Flow under Extreme Conditions, Heat Transfer 1998, Proc. 11th IHTC, Kyongju, Korea, 1998, vol. 1, pp. 131–147.

    Google Scholar 

  55. Fauser, J. and Mitrovic, J., Propagation of Boiling Fronts in Superheated Liquids, Proc. Second Conf. on Convective Flow and Pool Boiling, Irsee, Germany, 8–23May, 1997.

  56. Fauser, J. and Mitrovic, J., Some Features of Boiling Fronts on Heated Surfaces, Heat Transfer 1998, Proc. 11th IHTC, Kyongju, Korea, 1998, vol. 2, pp. 377–382.

    Google Scholar 

  57. Gorenflo, D., Luke, A., and Danger, E., Interactions between Heat Transfer and Bubble Formation in Nucleate Boiling, Heat Transfer 1998, Proc. 11th IHTC, Kyongju, Korea, 1998, vol. 1, pp. 149–174

    Google Scholar 

  58. Syromyatnikov, S.N. and Pavlov, P.A., Instability of Evaporation Surface, High Temp., 1998, vol. 36, no. 2, pp. 298–303.

    Google Scholar 

  59. Okuyama, K., Iida, Y., Sasaki, H., and Kim, J., Vapor Generation and Collapse Behavior on a Fine Wire Subjected to Pulse Heating (Experimental Results for a Wide Range of Heating Rates), Therm. Sci. Eng., 1999, vol. 7, no. 4, pp. 37–43.

    Google Scholar 

  60. Wang, J., Preliminary Analysis of Rapid Boiling Heat Transfer, Int. Commun. Heat Mass Transfer, 2000, vol. 27, pp. 377–388.

    Article  Google Scholar 

  61. Mitrovic, J. and Fauser, J., Propagation of Boiling Fronts along Horizontally Arranged Heated Tubes, Trans. Inst. Chem. Eng., 2001, vol. 79, pt. A, pp. 363–370.

    Article  Google Scholar 

  62. Obuhov, S.G., Drulis, V.N., Egoshin, E.A., and Obuhov, D.S., Nonstationary Nucleate Boiling Crisis at Electro-Regulation of Thermal Loading, J. Eng. Phys. Thermophys., 2002, vol. 78, no. 6, pp. 126–130.

    Google Scholar 

  63. Glod, S., Poulikakos, D., Zhao, Z., and Yadigarogly, G., An Investigation of Microscale Explosive Vaporization of Water on an Ultrathin Pt Wire, Int. J. Heat Mass Transfer, 2002, vol. 45, pp. 367–379.

    Article  Google Scholar 

  64. Duluc, M., Stutz, B., and Lallemand, M., Transient Nucleate Boiling under Stepwise Heat Generation for Highly Wetting Fluids, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 25, pp. 5541–5553.

    Article  Google Scholar 

  65. Deev, V.I., Kharitonov, V.S., Kutsenko, K.V., and Lavrukhin, A.A., Transient Boiling Crisis of Cryogenic Liquids, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 25, pp. 5477–5482.

    Article  MATH  Google Scholar 

  66. Dong, Z., Huai, X., and Liu, D., Experimental Study on the Explosive Boiling in Saturated Liquid Nitrogen, Progress Nat. Sci., 2005, vol. 15, pp. 61–65.

    Article  Google Scholar 

  67. Theofanous, T.G. and Dinh, T.N., High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities, Multiphase Sci. Technol., 2006, vol. 18, no. 1, pp. 1–26.

    Article  Google Scholar 

  68. Okuyama, K., Kim, J., Mori, S., and Iida, Y., Boiling Propagation of Water on a Smooth Film Heater Surface, Int. J. Heat Mass Transfer, 2006, vol. 49, iss. 13/14, pp. 2207–2214.

    Article  Google Scholar 

  69. Pavlenko, A.N. and Chekhovich, V.Yu., Interconnection between Dynamics of Liquid Boiling-up and Heat Transfer Crisis for Nonstationary Heat Release, J. Eng. Therm., 2007, vol. 16, no. 3, pp. 175–187.

    Article  Google Scholar 

  70. Huai, X., Wang, G., Jin, R., Yin, T., and Zou, Y., Microscopic Explosive Boiling Induced by a Pulsed-Laser Irradiation, Heat Mass Transfer, 2008, vol. 45, pp. 117–126.

    ADS  Google Scholar 

  71. Deev, V.I., Kutsenko, K.V., Lavrukhin, A.A., and Kharitonov, V.S., Influence of Initial Heat Generation on Dynamic Characteristics of Transient Boiling Crisis of Water, Int. J. Heat Mass Transfer, 2010.

  72. Avksentyuk, B.P., Non-Equilibrium Model of an Evaporation Front, Russ. J. Eng. Therm., 1995, vol. 5, pp. 1–8.

    Google Scholar 

  73. Avksentyuk, B.P. and Ovchinnikov, V.V., AModel of Evaporation Front, TVT, 1996, vol. 5, pp. 809–812.

    Google Scholar 

  74. Pavlenko, A.N. and Lel, V.V., Model of Self-Maintaining Evaporation Front for Superheated Liquids, Proc. Third Int. Conf. on Multiphase Flow, ICMF-98, Lyon, France, June 8–2, no. 4.3–5, prod. by File M www.filem.com., 1998.

  75. Moloshnikov, A.S. and Shmal, I.I., TwoRegimes of Superheated Liquid Boiling on a Wire, TVT, 2000, vol. 38, no. 1, pp. 57–60.

    Google Scholar 

  76. Aktershev, S.P. and Ovchinnikov, V.V., Model of Stationary Motion of Multiphase Surface in the Layer of Extremely Heated Liquid, J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 2, pp. 47–55.

    Article  Google Scholar 

  77. Shepherd, J.E. and Sturtevant, B., Rapid Evaporation at the Superheat Limit, J. FluidMech., 1982, vol. 121, pp. 379–402.

    ADS  Google Scholar 

  78. Frost, D.L., Dynamics of Explosive Boiling of a Droplet, Phys. Fluid, 1988, vol. 31, no. 9, pp. 2554–2561.

    Article  ADS  Google Scholar 

  79. Landau, L.D. and Lifshits, E.P., Mekhanika sploshnykh sred (Mechanics of Solid Media), Moscow: Gostekhizdat, 1944.

    Google Scholar 

  80. Pavlenko, A.N., Surtaev, A.S., and Matsekh, A.M., Transient Processes in Falling Liquid Films, TVT, 2007, vol. 45, no. 6, pp. 905–916.

    Google Scholar 

  81. Surtaev, A.S. and Pavlenko, A.N., Crisis Effects in Falling Liquid Films under Periodically Varied Thermal Load, Teplofiz. Aeromekh., 2009, vol. 16, no. 3. pp. 485-496.

  82. Pavlenko, A. and Surtaev, S., Development of Crisis Phenomena in Falling Wavy Liquids Films at Nonstationary Heat Release, Micrograv. Sci. Tech., 2010, vol. 22, iss. 2, pp. 215–221.

    Article  Google Scholar 

  83. Pavlenko, A.N., Surtaev, A.S., Tsoi, A.N., and Pyatkov, A.S., Decay of Falling Wavy Liquid Films at Nonstationary Heat Release, Proc. 14th Int. Heat Transfer Conf. (IHTC-14), Washington, USA, August 8–13, 2010, p. 8.

  84. Borishanskiy, V.M. and Fokin, B.S., Onset of Heat-Transfer Crisis with Unsteady Increase in Heat Flux, Heat Transfer Sov. Res., 1969, vol. 1, no. 5, pp. 1–55.

    Google Scholar 

  85. Syromyatnikov, S.N. and Pavlov, P.A., Instability of Evaporation Surface, Teplofiz. Vys. Temp., 1998, vol. 36, no. 2, pp. 298–303.

    Google Scholar 

  86. Verkin, B.I., Kirichenko, Yu.A., and Rusanov, K.V., Teploobmen pri kipenii kriogennykh zhidkostei (Heat Transfer in Boiling of Cryogenic Liquids), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  87. Pavlenko, A.N. and Starodubtseva, I.P., The Study of the Development Dynamics of Semi-Infinite and Local Sites of Film Boiling, Thermophys. Aeromech., 1998, vol. 5, no. 2, pp. 195–207.

    Google Scholar 

  88. Pavlenko, A.N., Starodubtseva, I.P., and Matsekh, A.M., The Effect of Boundary Conditions on Dynamics of Film Boiling Site Development, Thermophys. Aeromech., 2003, vol. 10, no. 4, pp. 591–606.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlenko, A.N., Tairov, E.A., Zhukov, V.E. et al. Investigation of transient processes at liquid boiling under nonstationary heat generation conditions. J. Engin. Thermophys. 20, 380–406 (2011). https://doi.org/10.1134/S1810232811040060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232811040060

Keywords

Navigation