Skip to main content

The influence of Fe, Cu, SiO2, TiO2, and Al2O3 nanoparticles in aqueous solution on proton relaxation times

Abstract

Measurements of proton nuclear spin-spin and spin-lattice relaxation times are applied for determining the concentration of solid-phase nanoparticles in nanofluids. This approach is tested for metal oxides SiO2, TiO2, Al2O3 and metal-carbon nanoparticles of 3d-metals Fe and Cu. It is shown that the sensitivity of the method for determining concentrations of 3d-metals is much higher than for oxides (by 2–4 orders of magnitude). It is revealed that measurement of the proton spin-spin relaxation time allows one to determine the concentration of Cu nanoparticles to 0.0001 mg/ml and that of Fe nanoparticles to 0.00001 mg/ml.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Choi, S.U., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, 1995, FED-vol. 231/MD-vol. 66, pp. 99–105.

    Google Scholar 

  2. 2.

    Mikheev, G.M., Kuznetsov, V.L., Bulatov, D.L., Mogileva, T.N., Moseenkov, S.I., and Ishchenko, A.V., Techn. Phys. Lett., 2009, vol. 35, no. 2, pp. 162–165.

    Article  ADS  Google Scholar 

  3. 3.

    Keblinski, P., Eastman, J.A., and Cahill, D.G., Materials Today, 2005, vol. 8, no. 6, pp. 36–44.

    Article  Google Scholar 

  4. 4.

    Wang, X.-Q. and Mujumdar, A.S., Int.. J. Therm. Sci., 2007, vol. 46, pp. 1–19.

    MATH  Article  Google Scholar 

  5. 5.

    Ho, C.J., Huang, J.B., Tsai, P.S., and Yang, Y.M., Preparation and Properties of Hybrid Water-Based Suspension of Al2O3 Nanoparticles and MEPCM Particles as Functional Forced Convection Fluid, Int. Commun. Heat Mass Transf., 2010.

  6. 6.

    Bloch, F., Phys. Rev., 1946, vol. 70, p. 460.

    Article  ADS  Google Scholar 

  7. 7.

    Purcell, E.M., Torrey, H.C., and Pound, R.V., Phys. Rev., 1946, vol. 69, p. 37.

    Article  ADS  Google Scholar 

  8. 8.

    Brown, S.P. and Spiess, H.W., Chem. Rev., 2001, vol. 101, p. 4125.

    Article  Google Scholar 

  9. 9.

    Zorin, V.E. and Lundin, A.G., Vestnik RFBR, 2007, no. 4(54), p. 25.

  10. 10.

    Wang, L.-Q., Zhou, X.-D., Exarhos, G.J., Pederson, L.R., Wang, C., Windisch, C.F., and Yao, C., Appl. Phys. Lett., 2007, vol. 91, art. 173107.

  11. 11.

    Kim, J.S., Lee, K.W., Kweon, J.J., Lee, C.E., Kim, K., Lee, J., Noh, C.J., and Kim, H.S., Appl. Phys. Lett., 2010, vol. 96, art. 062504.

  12. 12.

    Song, Y.-Q., Cho, H., Hopper, T., Pomerantz, A.E., and Sun, P.Z., J. Chem. Phys., 2008, vol. 128, art. 052212.

  13. 13.

    Kim, Y., Abou-Hamad, E., Rubio, A., Wagberg, T., Talyzin, A.V., Boesch, D., Aloni, S., Zettl, A., Luzzi, D.E., and Goze-Bac, C., J. Chem. Phys., 2010, vol. 132, art. 021102.

  14. 14.

    Gerardi, C., Cory, D., Buongiorno, J., Hu, L.-W., and McKrell, T., Appl. Phys. Lett., 2009, vol. 95, no. 25, art. 253104.

  15. 15.

    Borgia, G.C., Brown, R.J., and Fantazzini, P., J. Magn. Reson., 2000, vol. 147, pp. 273–285.

    Article  ADS  Google Scholar 

  16. 16.

    Whittall, K.P., Bronskill, M.J., and Henkelman, R.M., J. Magn. Reson., 1991, vol. 95, p. 221.

    Google Scholar 

  17. 17.

    Glasel, J.A. and Lee, K.H., J. Am. Chem. Soc., 1974, vol. 96, no. 4, pp. 970–978.

    Article  Google Scholar 

  18. 18.

    Emets, B.G., Techn. Phys. Lett., 1997, vol. 23, no. 7, p. 513.

    Article  ADS  Google Scholar 

  19. 19.

    Menzel, D., Fundamental Formulas of Physics, New York: Prentice Hall, 1955, p. 315.

    Google Scholar 

  20. 20.

    Carrington, A. and McLachlan, A.D., Introduction to Magnetic Resonance, New York: Harper and Row, 1967.

    Google Scholar 

  21. 21.

    Koenig, S.H. and Kellar, K.E., Magn. Res. Med., 1995, vol. 34, pp. 227–233.

    Article  Google Scholar 

  22. 22.

    Bardakhanov, S.P., Korchagin, A.I., Kuksanov, N.K., Lavrukhin, A.V., Salimov, R.A., Fadeev, S.N., and Cherepkov, V.V., Mater. Sci. Eng. B, 2006, vol. 132, p. 204.

    Article  Google Scholar 

  23. 23.

    Maltsev, V.A., Novopashin, S.A., Nerushev, O.A., Sakhapov, S.Z., and Smovzh, D.V., Nanotech. Russ., 2007, vol. 2, nos. 5/6, p. 85.

    Google Scholar 

  24. 24.

    Kowalewski, J. and Maler, L., Nuclear Spin Relaxation in Liquids: Theory, Experiments and Applications, Taylor Francis Group, 2006.

  25. 25.

    Iler, R.K., The Chemistry of Silica, Willey & Sons, 1979.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. G. Bagryanskaya.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bagryanskaya, E.G., Krumkacheva, O.A., Belikov, A.E. et al. The influence of Fe, Cu, SiO2, TiO2, and Al2O3 nanoparticles in aqueous solution on proton relaxation times. J. Engin. Thermophys. 20, 55–63 (2011). https://doi.org/10.1134/S181023281101005X

Download citation

Keywords

  • Relaxation Time
  • Relaxation Rate
  • Engineer THERMOPHYSICS
  • Engineering THERMOPHYSICS
  • Nuclear Magnetization Relaxation