Skip to main content

Mass spectrometry of molecules and radicals in glow discharge plasma

Abstract

The article represents a method and equipment developed for mass spectrometric analysis of plasma, that is, for measurement of concentration of atoms and molecules, and their fragments, including free radicals. A compact and inexpensive mass spectrometer is based on a quadrupole residual gas analyzer (RGA-200, Stanford Research Systems). The design of the two-section differential pumping chamber makes it possible to bring the mass-spectrometer analyzer to the entrance diaphragm to a distance of 40 mm in order to measure quick reacting and easily condensed particles. The equipment was used for analyzing the composition of spherical glow discharge plasma in methanol vapor and acetone-nitrogen mixture. A procedure for mass spectrum processing is proposed. Time-varying concentrations of all observed neutral particles are measured. Presently available data on sections of complete and dissociative ionization of molecules and their fragments, which are necessary for reconstructing concentrations of particles in plasma from measured mass spectra, are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Mechold, L., Röpcke, J., Duten, X., and Rousseau, A., Plasma Sourc. Sci. Technol., 2001, vol. 10, p. 52.

    Article  ADS  Google Scholar 

  2. 2.

    Hempel, F., Davies, P.B., Loffhagen, D., Mechold, L., and Röpcke, J., Plasma Sourc. Sci. Technol., 2003, vol. 12, p. S98.

    Article  ADS  Google Scholar 

  3. 3.

    Mutsukura, N., Plasma Chem. Plasma Process., 2001, vol. 21, p. 265.

    Article  Google Scholar 

  4. 4.

    Coll, P., Coscia, D., Gazeau, M.C., De Vanssay, E., Guillemin, J.C., and Raulin F., Adv. Space Res., 1995, vol. 16, p. 93.

    Article  ADS  Google Scholar 

  5. 5.

    Tabares, F.L., Tafalla, D., Tanarro, I., Herrero, V.J., Islyaikin, A., and Maffiotte, C., Plasma Phys. Control. Fusion, 2002, vol. 44, p. L1.

    Article  Google Scholar 

  6. 6.

    Penetrante, B.M., Hsiao, M.C., Bardsley, J.N., Merritt, B.T., Vogtlin, G.E., Kuthi, A., Burkhart, C.P., and Bayless, J.R., Plasma Sourc. Sci. Technol., 1997, vol. 6, p. 251.

    Article  ADS  Google Scholar 

  7. 7.

    Kareev, M., Sablier, M., and Fujii, T., J. Phys. Chem., 2000, vol. 104, p. 7218.

    Google Scholar 

  8. 8.

    Fantz, U., Plasma Sourc. Sci. Technol., 2006, vol. 15, p. S137.

    Article  ADS  Google Scholar 

  9. 9.

    Magne, L., Pasquiers, S., Edon, V., Jorand, F., Postel, C., and Amorim, J., J. Phys. D: Appl. Phys., 2005, vol. 38, p. 3446.

    Article  ADS  Google Scholar 

  10. 10.

    Kae-Nune, P., Perrin, J., Guillon, J., and Jolly J., Plasma Sourc. Sci. Technol., 1995, vol. 4, p. 250.

    Article  ADS  Google Scholar 

  11. 11.

    Ngai, A.K., Persijn, S.T., Harren, F.J., Verbraak, H., and Linnartz, H., Appl. Phys. Lett., 2007, vol. 90, p. 081109.

    Article  ADS  Google Scholar 

  12. 12.

    Schram, D.C., Plasma Sourc. Sci. Technol., 2009, vol. 18, p. 014003.

    Article  ADS  Google Scholar 

  13. 13.

    Welzel, A., Rousseau, A., Davies, P.B., and Röpcke J., J. Phys.: Conf. Ser., 2007, vol. 86, p. 012012.

    Article  ADS  Google Scholar 

  14. 14.

    Engeln, R., Letourneur, K.G., Boogaarts, M.G., van de Sanden M.C., and Schram, D.C., Chem. Phys. Lett., 1999, vol. 310, p. 405.

    Article  ADS  Google Scholar 

  15. 15.

    Röpcke, J., Lombardi, G., Rousseau, A., and Davies P.B., Plasma Sourc. Sci. Technol., 2006, vol. 15, p. S148–S168

    Article  Google Scholar 

  16. 16.

    Kessels, W.M., Hoefnagels, J.P., Boogaarts, M.G., Schram, D.C., and van de Sanden, M.C., J. Appl. Phys., 2001, vol. 89, p. 2065.

    Article  ADS  Google Scholar 

  17. 17.

    Van Helden, J.H., van den Oever, P.J., Kessels, W.M., van de Sanden, M.C., Schram, D.C., and Engeln, R., J. Phys. Chem. A, 2007, vol. 111, p. 11460.

    Article  Google Scholar 

  18. 18.

    Benedikt, J., Eijkman, D.J., Vandamme, W., Agarwal, S., and van de Sanden, M.C., Chem. Phys. Lett., 2005, vol. 402, p. 37.

    Article  ADS  Google Scholar 

  19. 19.

    Pauser, H., Schwfirzler, C.G., Laimer, J., and Störi, H., Plasma Chem. Plasma Process., 1997, vol. 17, p. 107.

    Article  Google Scholar 

  20. 20.

    Zarrabian, M., Leteinturier, C., and Turban, G., Plasma Sourc. Sci. Technol., 1998, vol. 7, p. 607.

    Article  ADS  Google Scholar 

  21. 21.

    Ando, S., Shinohara, M., and Takayama, K., Vacuum, 1998, vol. 49, p. 113.

    Article  Google Scholar 

  22. 22.

    Sam, M.M., Abad, L., Herrero, V.J., and Tanarro, I., J. Appl. Phys., 1992, vol. 71, p. 5372.

    Article  ADS  Google Scholar 

  23. 23.

    Selvin, P.C., Iwase, K., and Fujii, T., J. Phys. D: Appl. Phys., 2002, vol. 35, p. 675.

    Article  ADS  Google Scholar 

  24. 24.

    Singh, H., Coburn, J.W., and Graves, D.B., J. Vac. Sci. Technol. A, 1999, vol. 17, p. 2447.

    Article  ADS  Google Scholar 

  25. 25.

    Itoh, H., Hattori, T., and Murakami, Y., Appl. Catal., 1982, vol. 2, p. 19.

    Article  Google Scholar 

  26. 26.

    Bhargava, A. and Westmoreland, P.R., Combust. Flame, 1998, vol. 115, p. 456.

    Article  Google Scholar 

  27. 27.

    Conde, L. and Leon, L., Phys. Plasmas, 1994, vol. 1, p. 2441.

    Article  ADS  Google Scholar 

  28. 28.

    Nerushev, O.A., Novopashin, S.A., Radchenko, V.V., and Sukhinin, G.I., Phys. Rev. E, 1998, vol. 58, p. 4897.

    Article  ADS  Google Scholar 

  29. 29.

    Novopashin, S.A., Radchenko, V.V., and Sakhapov, S.Z., J. Eng. Therm., 2008, vol. 17, p. 71.

    Google Scholar 

  30. 30.

    NIST Databases, http://physics.nist.gov/PhysRefData/contents.html.

  31. 31.

    Bartlett, P.L. and Stelbovics, A.T., At. Data Nucl. Data Tables, 2004, vol. 86, p. 235.

    Article  ADS  Google Scholar 

  32. 32.

    Suno, H. and Kato, T., At. Data Nucl. Data Tables, 2006, vol. 92, p. 407.

    Article  ADS  Google Scholar 

  33. 33.

    Hudson, J.E., Hamilton, M.L., Vallance, C., and Harland, P.W., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 3162.

    Article  Google Scholar 

  34. 34.

    McConkey, J.W., Malonea, C.P., Johnson, P.V., Winstead, C., McKoy, V., and Kanik, I., Phys. Rep., 2008, vol. 466, p. 1.

    Article  ADS  Google Scholar 

  35. 35.

    Joshipura, K.N., Vinodkumar, M., and Patel, U.M., J. Phys. B: At. Mol. Opt. Phys., 2001, vol. 34, p. 509.

    Article  ADS  Google Scholar 

  36. 36.

    Deutsch, H., Becker, K., Matt, S., and Mark, T.D., Int. J.Mass Spectr., 2000, vol. 197, p. 37.

    Article  Google Scholar 

  37. 37.

    Alman, D.A., Ruzic, D.N., and Brooks, J.N., Phys. Plasmas, 2000, vol. 7, p. 1421.

    Article  ADS  Google Scholar 

  38. 38.

    Janev, R.K. and Reiter, D., Phys. Plasmas, 2002, vol. 9, p. 4071.

    Article  ADS  Google Scholar 

  39. 39.

    Chatham, H., Hils, D., Robertson, R., and Gallagher, A., J. Chem. Phys., 1984, vol. 81, p. 1770.

    Article  ADS  Google Scholar 

  40. 40.

    Grill, V., Walder, G., Margreiter, D., Rauth, T., Poll, H.U., Scheier, P., and Mark, T.D., Z. Physik D, 1993, vol. 25, p. 217.

    Article  ADS  Google Scholar 

  41. 41.

    Fiegele, T., Grill, V., Matt, S., Lezius, M., Hanel, G., Probst, M., Scheier, P., Becker, K., Deutsch, H., Echt, O., Stamatovic, A., and Mark, T.D., Vacuum, 2001, vol. 63, p. 561.

    Article  Google Scholar 

  42. 42.

    Bull, J.N. and Harland, P.W., Int. J. Mass Spectr., 2008, vol. 273, p. 53.

    Article  Google Scholar 

  43. 43.

    Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Int. J.Mass Spectr., 2008, vol. 273, p. 117.

    Article  Google Scholar 

  44. 44.

    Pal, S., Chem. Phys., 2004, vol. 302, p. 119.

    Article  ADS  Google Scholar 

  45. 45.

    Vinodkumar, M., Limbachiya, C., Joshipura, K.N., Vaishnav, B., and Gangopadhyay, S., J. Phys.: Conf. Ser., 2008, vol. 115, p. 012013.

    Article  ADS  Google Scholar 

  46. 46.

    Rejoub, R., Morton, C.D., Lindsay, B.G., and Stebbings, R.F., J. Chem. Phys., 2003, vol. 118, p. 1756.

    Article  ADS  Google Scholar 

  47. 47.

    Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Chem. Phys., 2006, vol. 323, p. 587.

    Article  ADS  Google Scholar 

  48. 48.

    Vacher, J.R., Jorand, F., Blin-Simiand, N., and Pasquiers, S., Chem. Phys. Lett., 2009, vol. 476, p. 178.

    Article  ADS  Google Scholar 

  49. 49.

    Deutsch, H., Becker, K., Basner, K., Schmidt, M., and Mark, T.D., J. Phys. Chem. A, 1998, vol. 102, p. 8819.

    Article  Google Scholar 

  50. 50.

    Tarnovsky, V., Deutsch, H., and Becker, K., J. Chem. Phys., 1998, vol. 109, p. 932.

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. E. Belikov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belikov, A.E., Sakhapov, S.Z., Smith, M.A. et al. Mass spectrometry of molecules and radicals in glow discharge plasma. J. Engin. Thermophys. 20, 42–54 (2011). https://doi.org/10.1134/S1810232811010048

Download citation

Keywords

  • Ionization Cross Section
  • Discharge Chamber
  • Dissociative Ionization
  • Engineer THERMOPHYSICS
  • Glow Discharge Plasma