Skip to main content

Dynamics of local density perturbation in stably stratified fluid: Results of numerical experiments

Abstract

Linear and nonlinear numerical models of dynamics of local density perturbation in a stably stratified medium are constructed. The influence of viscosity on the process of generation and propagation of internal waves generated by the local density perturbation in a pycnocline is evaluated. The problem on the dynamics of local density perturbation in the presence of wave background is considered.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fedorov, K.N., Tonkaya termokhalinnaya struktura vod okeana (Thin Thermohaline Structure of Ocean Water), Leningrad: Gidrometeoizdat, 1976.

    Google Scholar 

  2. 2.

    Lighthill, J., Volny v zhidkostyakh (Waves in Fluids), Moscow: Mir, 1981.

    MATH  Google Scholar 

  3. 3.

    Maderich, V.S., Nikishov, V.I., and Stetsenko, A.G., Dinamika vnutrennego peremeshivaniya v stratifitsirovannoi srede (Dynamics of Internal Mixing in a Stratified Medium), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  4. 4.

    Monin, A.S. and Ozmidov, R.V., Okeanskaya turbulentnost’ (Ocean Turbulence), Leningrad: Gidrometeoizdat, 1981.

    Google Scholar 

  5. 5.

    Turner, J.S., Buoyancy Effects in Fluids, Cambridge Univ., 1973.

  6. 6.

    Munroe, J.R, Voegeli, C., Sutherland, B.R., Birman, V., and Meiburg, E.H., Intrusive Gravity Currents from Finite-Length Locks in a Uniformly Stratified Fluid, J. Fluid Mech., 2009, vol. 635, pp. 245–273.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  7. 7.

    Gilreath, H.E. and Brandt, A., Experiments on the Generation of Internal Waves in Stratified Fluid, AIAA J., 1985, vol. 23, no. 5, pp. 693–700.

    Article  ADS  Google Scholar 

  8. 8.

    Voropaeva, O.F. and Chernykh, G.G., Internal Waves Generated by Momentumless Turbulent Wake in a Linearly Stratified Fluid, Matem. Mod., 1998, vol. 10, no. 6, pp. 75–89.

    Google Scholar 

  9. 9.

    Voropaeva, O.F., Moshkin, N.P., and Chernykh G.G., Internal Waves Generated by Turbulent Wakes in a Stably Stratified Medium, Dokl. Phys., 2003, vol. 48, no. 9, pp. 517–521.

    Article  MathSciNet  ADS  Google Scholar 

  10. 10.

    Moshkin, N.P., Chernykh, G.G., and Fomina, A.V., On the Influence of Small Total Momentum Imbalance on Turbulent Wake Dynamics in the Linearly Stratified Medium, Matem. Mod., 2005, vol. 17, no. 1, pp. 19–33.

    MATH  Google Scholar 

  11. 11.

    Vasilyev, O.F., Kuznetsov, B.G., Lytkin, Yu.M., and Chernykh, G.G., Development of the Region of Turbulized Fluid in a Stratified Medium, Izv. AN SSSR, Ser. Mekh. Zhid. Gaza, 1974, no. 3, pp. 45–52.

  12. 12.

    Lytkin, Yu.M. and Chernykh, G.G., On the Internal Waves Induced by Collapse of Mixing Zone in a Stratified Fluid, in Matematicheskie voprosy mekhaniki, Dinamika sploshnoi sredy (Mathematical Issues in Mechanics, Dynamics of Solid Medium), Novosibirsk: Inst. Gidr. SB RAS, 1975, iss. 22, pp. 116–132.

    Google Scholar 

  13. 13.

    Gushchin, V.A., Separation Method for Problems of Inhomogeneous Fluid Dynamics, Zh. Vych. Mat. Mat. Fiz., 1981, vol. 21, no. 4, pp. 1003–1017.

    MathSciNet  Google Scholar 

  14. 14.

    Zudin, A.N. and Chernykh, G.G., On One Algorithm of Calculating Nonstationary Stratified Flows, in Chislennye metody mekhaniki sploshnoi sredy (Numerical Methods in Mechanics of Solid Medium), SB USSR Acad. Sci., Computing Center, Inst. of Theoretical and Applied Mechanics, Novosibirsk, 1982, vol. 13, no. 5, pp. 32–47.

    Google Scholar 

  15. 15.

    Zudin, A.N. and Chernykh, G.G., Examples of Calculating Nonstationary Stratified Flows Using Euler-Lagrange Coordinate System, Preprint of Inst. of Theoretical and Applied Mechanics SB USSR Acad. Sci., Novosibirsk, 1985, no. 9.

    Google Scholar 

  16. 16.

    Stepanyants, Yu.A., Sturova, I.V., and Teodorovich, I.V., Linear Theory of Generation of Surface and Internal Waves, Itogi Nauki Tekhn., Ser. Mekh. Zhidk. Gaza, VINITI, 1987, vol. 21, pp. 93–179.

    MATH  Google Scholar 

  17. 17.

    Zudin, A.N. and Chernykh, G.G., Internal Waves Generated by Local Density Perturbation in a Nonlinear Stratified Fluid, in Modelirovanie v mekhanike (Modeling in Mechanics), SB USSR Acad. Sci., Computing Center, Inst. of Theoretical and Applied Mechanics, Novosibirsk, 1988, vol. 2, no. 4, pp. 49–74.

    Google Scholar 

  18. 18.

    Voropaeva, O.F. and Chernykh, G.G., Evolution of the Turbulent Mixing Zone in a Nonlinear Stratified Fluid, in Modelirovanie v mekhanike (Modeling in Mechanics), SB RAS, Computing Center, Inst. of Theoretical and Applied Mechanics, Novosibirsk, 1998, vol. 3(20), no. 5, pp. 3–29.

    Google Scholar 

  19. 19.

    Chernykh, G.G., Voropayeva, O.F., and Zudin, A.N., Numerical Simulation of Internal Waves Generated by Local Density Perturbation, Stratified Medium, Mathematical and Numerical Aspects of Wave Propagation (Proc. 3d Int. Conf.), Cohen, G., Ed., Philadelphia, PA: Soc. Industrial and Applied Mathematics, 1995, pp. 119–128.

    Google Scholar 

  20. 20.

    Smirnov, G.V., Veden’kov, V.E., and Galkovskii, A.N., On the Conditions of Generation of Nonlinear Internal Waves under Collapse of Mixed Spot in a Stratified Fluid, Okeanologiya, 1997, vol. 37, no. 3, pp. 338–344.

    Google Scholar 

  21. 21.

    Terez, D.E. and Knio, O.M., Numerical Simulations of Large-Amplitude Internal Solitary Waves, J. Fluid Mech., 1998, vol. 362, pp. 53–82.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  22. 22.

    Maderich, V.S., van Heijst, G.J., and Brandt, A., Laboratory Experiments on Intrusive Flows and Internal Waves in a Pycnocline, J. Fluid Mech., 2001, vol. 432, pp. 285–311.

    MATH  ADS  Google Scholar 

  23. 23.

    Chernykh, G.G. and Zudin, A.N., Dynamics of Local Density Perturbation in Shear Flow of a Linearly Stratified Medium, Russ. J. Num. Anal. Math. Modeling, 2003, vol. 18, no. 2, pp. 117–134.

    MATH  Article  MathSciNet  Google Scholar 

  24. 24.

    Chernykh, G.G. and Zudin, A.N., Linear and Nonlinear Numerical Models of Local Density Perturbation Dynamics in a Stable Stratified Medium, Russ. J. Num. Anal.Math.Modeling, 2005, vol. 20, no. 6, pp. 513–534.

    MATH  Article  MathSciNet  Google Scholar 

  25. 25.

    Yanenko, N.N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki (The Subincremental Method of Solving Multidimensional Problems of Mathematical Physics), Novosibirsk: Nauka, 1967.

    MATH  Google Scholar 

  26. 26.

    Benjamin, T.B., Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech., 1967, vol. 29,pt. 3, pp. 559–592.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  27. 27.

    Gavrilov, N.V., Solitary Internal Waves in a Two-Layer Fluid, Zh. Prikl. Mekh. Tekhn. Fiz., 1986, no. 5, pp. 49–54.

  28. 28.

    Gorodtsov, V.A. and Teodorovich, E.V., Linear Description of Evolution (Collapse) of Symmetrical Perturbation Distributions of a Uniformly Stratified Fluid, in Metody gidrofizicheskikh issledovanii (Methods of Hydrophysical Investigations), Gorky: Inst. of Applied Physics USSR Acad. Sci., 1984, pp. 134–147.

    Google Scholar 

  29. 29.

    Chernykh, G.G., Lytkin, Yu.M., and Sturova, I.V., Numerical Simulation of Internal Waves Induced by the Collapse of Turbulent Mixed Region in Stratified Medium, Proc. Int. Symp. on Refined Modeling Flows, Paris, 1982, pp. 671–679.

  30. 30.

    Gabov, S.A. and Sveshnikov, A.G., Zadachi dinamiki stratifitsirovannykh zhidkostei (Problems of Dynamics of Stratified Fluids), Moscow: Nauka, 1986.

    Google Scholar 

  31. 31.

    Sobolev, S.L., On One New Problem of Mathematical Physics, Izv. AN SSSR, Ser. Matem., 1954, vol. 18, no. 1, pp. 3–50.

    MathSciNet  Google Scholar 

  32. 32.

    Granberg, I.G. and Dikii, L.A., Stationing in a Nonlinear Problem of Airflow around Mountains, Izv. AN SSSR, Ser. Fiz. Atm. Ok., 1972, vol. 8, no. 3, pp. 264–269.

    Google Scholar 

  33. 33.

    Mallik, D.D., Some Comments on Equations of Hydromechanics and Their Exact Solutions, Vestnik LGU, Ser. Mat., Mekh., Astr., Leningrad: LGU, 1967, iss. 1, pp. 98–105.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. G. Chernykh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chernykh, G.G., Zudin, A.N. Dynamics of local density perturbation in stably stratified fluid: Results of numerical experiments. J. Engin. Thermophys. 20, 13–33 (2011). https://doi.org/10.1134/S1810232811010024

Download citation

Keywords

  • Euler Equation
  • Internal Wave
  • Stream Line
  • Engineer THERMOPHYSICS
  • Solitary Internal Wave