Skip to main content

Modeling the properties of methane + ethane (Propane) binary hydrates, depending on the composition of gas phase state in equilibrium with hydrate

Abstract

The properties of methane + ethane and methane + propane hydrates of cubic structures sI and sII are theoretically investigated. It is shown that the composition of the formed binary hydrate strongly depends on the percentage of a heavier guest in gas phase. For instance, for a 1% molar ethane concentration in gas phase, even at a low pressure, ethane occupies 60% large cavities in the hydrate sII, and as the pressure grows to 100 atm, it occupies 80% large cavities at a low temperature. The tendency remains the same at a temperature of higher than the ice melting point, but the methane concentration in the hydrate decreases to 30%. In the structure sI, the influence of the component composition of the gas mixture on that of the formed hydrate is less evident. However, in this case, calculation showed also that for a 1% molar ethane concentration in gas phase, ethane molecules occupy from 8 to 10% large hydrate cavities, depending on the pressure. This work is concerned with modeling phase transitions between cubic structures sI and sII of methane + ethane binary hydrates in view of incomplete occupation of cavities in the hydrate by guest molecules. For an ethane concentration under 2% in the gas mixture, the structure sII becomes more thermodynamically stable than the structure sI. However, as the ethane concentration grows to 20% in the equilibrium ice-gas-hydrate and to 40% in the equilibrium water-gas-hydrate, the structure sI becomes more thermodynamically stable. Hence, for low ethane concentrations in a gas mixture, the structure sI can be formed only as a metastable phase. Phase equilibria of methane hydrate sI and mixed methane + propane hydrate sII are considered, depending on the gas phase composition. Similar results are obtained for this equilibrium; this can evidence simultaneous formation of hydrates sI and sII at low propane concentrations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ginsburg, G.D. and Soloviev, V.A., Submarine Gas Hydrates, St. Petersburg: VNII Okeangeologia, 1994.

    Google Scholar 

  2. 2.

    Van der Waals, J.H. and Platteuw, J.C., Adv. Chem. Phys., 1959, no. 2, pp. 1–57.

  3. 3.

    Subbotin, O.S., Belosludov, V.R., Krupskii, D.S., Prokuda, O.V., Belosludov, R.V., and Kawazoe, Y., J. Phys.: Conf. Ser. (Proc. 3rd Conf., Asian Consortium for Comp. Mat. Sci.), Beijing, 2006, vol. 29, pp. 1–7.

    Google Scholar 

  4. 4.

    Berendsen, H.J., Grigera, J.R., and Straatsma, T.P., The Missing Term in Effective Pair Potential, J. Phys. Chem., 1987, vol. 91, pp. 6269–6271.

    Article  Google Scholar 

  5. 5.

    Krupskii, D.S., Subbotin, O.S., and Belousov, V.R., Gazovaya promyshlennost’ (Gazovye gidraty), 2006, pp. 70–74.

  6. 6.

    Sloan, E.D., Jr. and Koh, C.A., Clathrate Hydrates of Natural Gases, 3rd ed., Boca Raton: Taylor & Francis-CRC Press, 2007.

    Google Scholar 

  7. 7.

    Holder, G.D. and Hand, J.H., A.I.Ch.E. J., 1982, vol. 28, pp. 440–447.

    Google Scholar 

  8. 8.

    Subramanian, S., Kini, R.A., Dec, S.F., and Sloan, E.D., Jr., Chem. Eng. Sci., 2000, vol. 55, p. 1981.

    Article  Google Scholar 

  9. 9.

    Billard, A.L. and Sloan, E.D., Chem. Eng. Sci., 2001, vol. 56, p. 6883.

    Article  Google Scholar 

  10. 10.

    Ma, C.F., Chen, G.J., Wang, F., Sun, C.Y., and Gu, T.M., Fluid Phase Equilib., 2001, vol. 191, pp. 41–47.

    Article  Google Scholar 

  11. 11.

    Uchida, T., Takeya, S., Kamata, Y., Ikeda, I.Y., Naga, J., Ebinum, T., Narita, H., Zatsepina, O., and Buffett, B.A., J. Phys. Chem., B., 2002, vol. 106, pp. 12426.

    Article  Google Scholar 

  12. 12.

    Tsuji, H., Kobayashi, T., Ohmura, R., and Mori, Y.H., Energy & Fuels, 2005, vol. 19, pp. 869–876.

    Article  Google Scholar 

  13. 13.

    Uchida, T., Takeya, S., Kamata, Y., Ohmura, R., and Narit, H., Ind. Eng. Chem. Res., 2007, vol. 46, pp. 5080–5087.

    Article  Google Scholar 

  14. 14.

    Kim, D.-Y., Park, J., Lee, J., Ripmeester, J.A., and Lee, H., J. Am. Chem. Soc., 2006, vol. 128, pp. 15360–15361.

    Article  Google Scholar 

  15. 15.

    Hendriks, E.M., Edmonds, B., Moorwood, R.A., and Szczepansk, R., Fluid Phase Equil., 1996, vol. 117, pp. 193–200.

    Article  Google Scholar 

  16. 16.

    Subramanian, S., Ballard, A.L., Kini, R., Dec, S.F., and Sloan, E.D., Jr., Chem. Eng. Sci., 2000, vol. 55, pp. 5763–5771.

    Article  Google Scholar 

  17. 17.

    Ballard, A.L. and Sloan, E.D., Chem. Eng. Sci., 2000, vol. 55, pp. 5773.

    Article  Google Scholar 

  18. 18.

    Halpern, Y., Thieu, V., Henning, R.W., Wang, X., and Schultz, A.J., J. Am. Chem. Soc., 2001, vol. 123, pp. 12826–12832.

    Article  Google Scholar 

  19. 19.

    Larionov, E.G., Dyadin, Yu.A., Zhurko, F.V., and Manakov, A.Yu., J. Incl. Phenom. Macrocyclic Chem., 2006, vol. 56, pp. 303–308.

    Article  Google Scholar 

  20. 20.

    Schicks, J.M., Naumann, R., Erzinger, J., Hester, K.C., Koh, C.A., and Sloan, E.D., Jr., J. Phys. Chem., B, 2006, vol. 110, pp. 11468–11474.

    Article  Google Scholar 

  21. 21.

    Yeon, S.-H., Seol, J., and Lee, H., J. Am. Chem. Soc., 2006, vol. 128, pp. 12388–12389.

    Article  Google Scholar 

  22. 22.

    Belosludov, V.R., Subbotin, O.S., Krupskii, D.S., Belosludov, R.V., Kawazoe, Y., and Kudoh, J., Mat. Transact., 2007, vol. 48, pp. 704–710.

    Article  Google Scholar 

  23. 23.

    Kini, R.A., Dec, S.F., and Sloan, E.D., Jr., Methane + Propane Structure II Hydrate Formation Kinetics, J. Phys. Chem., A, 2004, no. 108, pp. 9550–9556.

  24. 24.

    Prigozhin, I. and Defeu, R., Khimicheskaya termodinamika (Chemical Thermodynamics), Novosibirsk: Nauka, 1966.

    Google Scholar 

  25. 25.

    Jager, M.D., Ballard, A.L., and Sloan, E.D., Jr., Fluid Phase Equil., 2003, vol. 211, pp. 85–107.

    Article  Google Scholar 

  26. 26.

    Tanaka, H., The Thermodynamic Stability of Clathrate Hydrate, III. Accommodation of Nonspherical Propane and Ethane Molecules, J. Chem. Phys., 1994, vol. 101, pp. 10833–10842.

    Article  ADS  Google Scholar 

  27. 27.

    Adamova, T.P., Subbotin, O.S., Pomeranskii, A.A., and Belosludov, V.R., Computational Materials Science (in press).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. S. Subbotin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhdanov, R.K., Adamova, T.P., Subbotin, O.S. et al. Modeling the properties of methane + ethane (Propane) binary hydrates, depending on the composition of gas phase state in equilibrium with hydrate. J. Engin. Thermophys. 19, 282–288 (2010). https://doi.org/10.1134/S1810232810040041

Download citation

Keywords

  • Ethane
  • Guest Molecule
  • Hydrate Formation
  • Ethane Concentration
  • Engineer THERMOPHYSICS