Skip to main content

Nonisothermal absorption in thermotransformers

Abstract

The results obtained using simple models of combined heat and mass transfer in nonisothermal vapor or gas absorption by aqueous solutions are generalized. The models take into account specific properties of two-phase binary systems used in absorbers of thermotransformers (heat pumps and refrigerators). Some authors have already cited certain of the results, including criterial dependences obtained via exact solutions, in reference books and monographs. This paper represents a wider spectrum of problems. The Russian, more detailed version of the article, was published as a book.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Baranenko, A.V., Timofeevskii, L.S., Dolotov, A.G., and Popov, A.V., Absorbtsionnye preobrazovateli teploty (Absorption Thermotransformers), St. Petersburg: SPbGUNiPT, 2005.

    Google Scholar 

  2. 2.

    Gommed, K. and Grossman, G., Process Steam Generation by Temperature Boosting of Heat from Solar Ponds, Solar Energy, 1988, vol. 41, no. 1, pp. 81–89.

    Article  Google Scholar 

  3. 3.

    Grossman, G., Film Absorption Heat and Mass Transfer in Presence of Non-Condensables. Heat Transfer, Proc. 9th Int. Heat Transfer Conf., 1990, pp. 247–252.

  4. 4.

    Equilibrium Properties of Lithium Bromide-Water Solutions, ASHRAE Handbook of Fundamentals, Am. Soc. of Heating, Refrigeration and Air Conditioning Engineers, 17.69/17.70, 1985.

  5. 5.

    McNeely, L.A., Thermodynamic Properties of Aqueous Solutions of Lithium Bromide, ASHRAE Trans., 1979, vol. 85, pp. 413–434.

    Google Scholar 

  6. 6.

    Ramm, V.M., Absorbtsionnye protsessy v khimicheskoi promyshlennosti (Absorption Processes in the Chemical Industry), Moscow: Goskhimizdat, 1951.

    Google Scholar 

  7. 7.

    Hobler, T., Massoperedacha i absorbtsiya (Mass Transfer and Absorption), Leningrad: Khimiya, 1964.

    Google Scholar 

  8. 8.

    Nakoryakov, V.E. and Grigorieva, N.I., Vapor Absorption Stagnant Layer of Solution, J. Eng. Therm., 2002, vol. 11, no. 1, pp. 115–127.

    Google Scholar 

  9. 9.

    Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Yavleniya perenosa (Transport Phenomena), Moscow: Khimiya, 1974.

    Google Scholar 

  10. 10.

    Chang, S.H. and Toor, H.L., Gas Absorption Accompanied by a Large Heat Effect and Volume Change of the Liquid Phase, AIChE J., 1964, vol. 10, no. 3, pp. 398–402.

    Article  Google Scholar 

  11. 11.

    Nakoryakov, V.E. and Grigor’eva, N.I., Calculation of Heat and Mass Transfer in Nonisothermal Absorption on Initial Portion of a Downflowing Film, Theor. Found. Chem. Eng., 1980, vol. 14, no. 4, pp. 483–488.

    Google Scholar 

  12. 12.

    Dorokhov, A.R. and Loginov, V.S., To Calculating the Liquid Surface Temperature in Combined Heat and Mass Transfer, Pis’ma ZhTF, 2000, vol. 26,iss. 4, pp. 31–36.

    Google Scholar 

  13. 13.

    Daiguji, H., Hihara, E., and Saito, T., Mechanism of Absorption Enhancement by Surfactant, Int. J. Heat Mass Transfer, 1997, vol. 40, no. 8, pp. 1743–1752.

    Article  Google Scholar 

  14. 14.

    Lykov, A.V., Teoriya teploprovodnosti (Theory of Heat Conductivity), Moscow: Vysshaya Shkola, 1967.

    Google Scholar 

  15. 15.

    Doetsch, G., Anleitung zum Praktischen Gebrauch der Laplace-Transformation und der z-Transformation, Wien, 1967.

  16. 16.

    Kamke, E., Differentialgleichungen, Losungsmethoden und Losungen, Leibzig: Geest und Portig, 1969.

    Google Scholar 

  17. 17.

    Nakoryakov, V.E., Bufetov, N.S., Grigoryeva, N.I., and Dekhtyar, R.A., Unsteady Heat and Mass Transfer for Vapor Absorption by Immobile Solution Layer, J. Eng. Therm., 2002, vol. 11, no. 4, pp. 275–286.

    Google Scholar 

  18. 18.

    Nakoryakov, V.E., Bufetov, N.S., Grigoryeva, N.I., and Dekhtyar, R.A., Heat and Mass Transfer at Vapor Absorption by an Immobile Layer of Solution, J.Appl. Mech. Tech. Phys., 2003, vol. 44, no. 2, pp. 101–108.

    MATH  Article  Google Scholar 

  19. 19.

    Nakoryakov, V.E., Grigoryeva, N.I., Bufetov, N.S., Dekhtyar, R.A., and Marchuk, I.V., Vapor Absorption by Immobile Solution Layer, Int. J. HeatMass Transfer, 2004, vol. 47, nos. 6/7, pp. 1525–1533.

    Article  Google Scholar 

  20. 20.

    Lover, H., Thermodynamischen und physikalische Eigenschaften der wassrigen Lithiumbromid Losung, Dissertation, Karlsruhe, 1960.

  21. 21.

    Nakoryakov, V.E. and Grigor’eva, N.I., Combined Heat and Mass Transfer during Absorption in Drops and Films, J. Eng. Phys., 1977, vol. 32, no. 3, pp. 243–247.

    Article  Google Scholar 

  22. 22.

    Grigor’eva, N.I. and Nakoryakov, V.E., Exact Solution of Combined Heat-and-Mass Transfer Problem during Film Absorption, J. Eng. Phys., 1977, vol. 33, no. 5. pp. 1349–1353.

    Article  Google Scholar 

  23. 23.

    Nakoryakov, V.E. and Grigor’eva, N.I., On Combined Heat and Mass Transfer in Film Absorption, in Teploobmen i gidrogazodinamika pri kipenii i kondensatsii (Heat Exchange and Hydraulic Gas Dynamics in Boiling and Condensation), Novosibirsk, 1979, pp. 278–284.

  24. 24.

    Nakoryakov, V.E., Grigor’eva, N.I., Lezhnin, S.I., and Potaturkina, L.V., Processes of Combined Heat and Mass Transfer in Film Absorption and Bubble Desorption, Preprint of Inst. of Thermophysics, Russ. Acad. Sci., Sib. Br., Novosibirsk, 1993, no. 266-93.

  25. 25.

    Nakoryakov, V.E., Grigor’eva, N.I., and Potaturkina, L.V., Analysis of Exact Solutions to Heat-and-Mass Transfer Problems for Absorption with Films or Streams, Theor. Found. Chem. Eng., 1997, vol. 31, no. 2, pp. 119–126.

    Google Scholar 

  26. 26.

    Nakoryakov, V.E. and Grigorieva, N.I., Heat andMass Transfer at Nonisothermal Film Absorption (Desorption), Russ. J. Eng. Therm., 1992, no. 1, pp. 1–16.

  27. 27.

    Isachenko, V.P., Teploobmen pri condensatsii (Heat and Mass Exchange in Condensation), Moscow: Energiya, 1977.

    Google Scholar 

  28. 28.

    Levich, V.G., Fisiko-khimicheskaya gidrodinamika (Physical-Chemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  29. 29.

    Grossman, G., Simultaneous Heat and Mass Transfer in Film Absorption under Laminar Flow, Int. J. Heat Mass Transfer, 1983, vol. 26, no. 3., pp. 357–371.

    Article  Google Scholar 

  30. 30.

    Mikhailov, M.D., General Solutions of the Heat Equation in Finite Regions, Int. J. Eng. Sci., 1972, vol. 10, no. 7, pp. 577–591.

    MATH  Article  Google Scholar 

  31. 31.

    Mikhailov, M.D., General Solutions of the Diffusion Equations Coupled at Boundary Conditions, Int. J. Heat Mass Transfer, 1973, vol. 16, no. 12, pp. 2155–2164.

    MATH  Article  Google Scholar 

  32. 32.

    Mikhailov, M.D. and Shishediev, B.K., Coupled at BoundaryMass or Heat Transfer in Entrance Concurrent Flow, Int. J. HeatMass Transfer, 1976, vol. 19, no. 5, pp. 553–557.

    MATH  Article  Google Scholar 

  33. 33.

    Sparrow, E.M. and Spalding, D.V., Combined Heat and Mass Transfer by Sublimation under Laminar Flow in Ducts, Teploperedacha, 1968, vol. 90, no. 1, pp. 123–133.

    Google Scholar 

  34. 34.

    Burdukov, A.P., Bufetov, N.S., and Dorokhov, A.R., Absorption on a Falling Liquid Film, Izv. SO AN SSSR, Ser. Tekhn. Nauk, 1979, iss. 3, no. 13, pp. 48–52.

  35. 35.

    Burdukov, A.P., Bufetov, N.S., and Dorokhov, A.R., Absorption on Liquid Film Falling on Adiabatic Wall, Izv. SO AN SSSR, Ser. Tekhn. Nauk, 1981, iss. 1, no. 3, pp. 13–16.

  36. 36.

    Burdukov, A.P., Bufetov, N.S., and Dorokhov, A.R., Heat Transfer to Thin Liquid Films in Absorption, Izv. SO AN SSSR, Ser. Tekhn. Nauk, 1982, iss. 1, no. 3, pp. 10–14.

  37. 37.

    Burdukov, A.P., Dorokhov, A.R., and Ogurechnikov, L.A., Methods for Calculation of Absorption in Heatand-Mass Exchange Devices, Preprint of Inst. of Thermophysics, SB RAS, 1993, no. 270.

  38. 38.

    Kutateladze, S.S., Gogonin, I.I, and Sosunov, V.I., Experimental Investigation ofHeat Exchange in Immobile Vapor Condensation on a Pack of Smooth Horizontal Tubes, Teor. Osnovy Khim. Tekhn., 1979, vol. 13, no. 5, pp. 716–720.

    Google Scholar 

  39. 39.

    Grigor’eva, N.I. and Nakoryakov, V.E., Calculation of Heat and Mass Transfer Processes in Binary Two-Phase Systems Used in Absorption Thermotransformers, Heat Transfer Res., 2002, vol. 33, nos. 5/6, pp. 151–159.

    Google Scholar 

  40. 40.

    Spravochnik po teploobmennikam (Reference Book of Heat Exchangers), Moscow: Energoatomizdat, 1987, vol. 1.

  41. 41.

    Grigor’eva, N.I. and Nakoryakov, V.E., ModelingHeat and Mass Transfer in Absorption in Binary Two-Phase Systems, Vestnik Mezhdunar. Akademii Kholoda, iss. 3, 2000, pp. 11–16.

  42. 42.

    Killion, J.D. and Garimella, S., A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption, Int. J. Refr., 2001, vol. 24, pp. 755–797.

    Article  Google Scholar 

  43. 43.

    Grossman, G., Simultaneous Heat and Mass Transfer in Film Absorption under Laminar Flow, Int. J. Heat Mass Transfer, 1983, vol. 26, no. 3, pp. 357–371.

    Article  Google Scholar 

  44. 44.

    Grossman, G. and Heath, M.T., Simultaneous Heat and Mass Transfer in Absorption of Gases in Turbulent Liquid Films, Int. J. HeatMass Transfer, 1984, vol. 27, no. 12, pp. 2365–2376.

    MATH  Article  Google Scholar 

  45. 45.

    Le Goff, H., Ramadane, A., and Le Goff, P., Modelisation des Transferts Couples de Matiere et de Chaleur dans l’absorption Gaz-Liquide en Film Ruisselant Laminaire, Int. J. Heat Mass Transfer, 1985, vol. 28, no. 11, pp. 2005–2017.

    MATH  Article  Google Scholar 

  46. 46.

    Conlisk, A.T., Analytical Solutions for the Heat and Mass Transfer in a Falling Film Absorber, Chem. Eng. Sci., 1995, vol. 50, no. 4, pp. 651–660.

    Article  Google Scholar 

  47. 47.

    Brauner, N., Maron, D.M., and Meyerson, H., The Effect of Absorbate Concentration Level in Hygroscopic Condensation, Int. Comm. Heat Mass Transfer, 1988, vol. 15, pp. 269–279.

    Article  Google Scholar 

  48. 48.

    Brauner, N., Maron, D.M, and Meyerson, H., Coupled Heat Condensation and Mass Absorption with Comparable Concentrations of Absorbate and Absorbent, Int. J. Heat Mass Transfer, 1989, vol. 32, no. 10, pp. 1897–1906.

    Article  Google Scholar 

  49. 49.

    Brauner, N., Non-Isothermal Vapor Absorption into Falling Film, Int. J. HeatMass Transfer, 1991, vol. 34, no. 3, pp. 767–784.

    MATH  Article  ADS  Google Scholar 

  50. 50.

    Van der Wekken, B.J. and Wassenaar, R.H., Simultaneous Heat and Mass Transfer Accompanying Absorption in Laminar Flow over a Cooled Wall, Int. J. Refr., 1988, vol. 11, pp. 70–77.

    Article  Google Scholar 

  51. 51.

    Van der Wekken, B.J., Wassenaar, R.H., and Segal, A., Finite Element Method Solution of Simultaneous Two-Dimensional Heat and Mass Transfer in Laminar Film Flow, Warme und Stoffubertrag, 1988, no. 22, pp. 347–354.

  52. 52.

    Yang, R. and Wood, B.D., A Numerical Modeling of an Absorption Process on a Liquid Falling Film, Solar Energy, 1992, vol. 48, no. 3, pp. 195–198.

    Article  Google Scholar 

  53. 53.

    Fominykh, A.V., Masso- i teploobmen pri absorbtsii i kondensatsii snaryadov gaza i para (Mass and Heat Transfer in Absorption and Condensation of Gas and Vapor Shells), Minsk, 1986, pp. 153–158.

  54. 54.

    Fedorchenko, A.I., Gorin, A.V., and Nakoryakov, V.E., Film Absorption on a Plane Surface Imbedded into a Granular Medium, Russ. J. Eng. Therm., 1993, vol. 3, no. 4, pp. 285–317.

    Google Scholar 

  55. 55.

    Valentin, F.H., Absorption in Gas-Liquid Dispersions: Some Aspect of Bubble Technology, London: Spoultd, 1967.

    Google Scholar 

  56. 56.

    Burdukov, A.P., Dorokhov, A.R., and Paniev, G.A., On Simultaneous Heat and Mass Transfer in Absorption on Drops, Izv. SO AN SSSR, Ser. Tekhn. Nauk, 1988, no. 15, iss. 4, pp. 31–34.

  57. 57.

    Mikhalevich, A.A., Matematicheskoe modelirovanie masso- i teploperenosa pri kondensatsii (Mathematical Modeling of Mass and Heat Transfer during Condensation), Minsk: Nauka i Tekhnika, 1982.

    Google Scholar 

  58. 58.

    Nakoryakov, V.E. and Grigor’eva, N.I., Film Absorption from a Gas Mixture with a Nonabsorbed Component, in Teplo- i massoperenos v absorbtsionnykh apparatakh (Heat and Mass Transfer in Absorption Systems), Novosibirsk, 1979, pp. 7–18.

  59. 59.

    Nakoryakov, V.E. and Grigoryeva, N.I., Film Absorption and Nusselt Problem, Russ. J. Eng. Therm., 1994, vol. 4, no. 1, pp. 5–17.

    Google Scholar 

  60. 60.

    Nakoryakov, V.E. and Grigor’eva, N.I., Heat and Mass Transfer in Film Absorption with Varying Liquid-Phase Volume, Theor. Found., Chem. Eng., 1995, vol. 29, no. 3, pp. 223–228.

    Google Scholar 

  61. 61.

    Hozawa, N., Inoue, M., Sato, J., and Imaishi, T., Marangoni Convection during Steam Absorption into Aqueous LiBr Solution with Surfactant, J. Chem. Eng. Jap., 1991, vol. 24, no. 2, pp. 209–214.

    Article  Google Scholar 

  62. 62.

    Ji, W. and Setterwall, F., Effect of Heat Transfer Additives on the Instabilities of an Adsorbing Falling Film, Chem. Eng. Sci., 1995, vol. 50, no. 19, pp. 3077–3097.

    Article  Google Scholar 

  63. 63.

    Kim, K.J., Berman, N.S., and Wood, B.D., The Interfacial Turbulence in Falling Film Absorption: Effects of Additives, Int. J. Refr., vol. 19, no. 5, 1996, pp. 322–330.

    Article  Google Scholar 

  64. 64.

    Nordgren, M. and Setterwall, F., An Experimental Study of the Effects of Surfactant on a Falling Liquid Film, Int. J. Refr., vol. 19, no. 5, pp. 310–316.

  65. 65.

    Kim, K.J., Berman, N.S., and Wood, B.D., Absorption of Water Vapor into LiBr Solutions with 2-Ethyl-1-hexanol, AIChE J., vol. 42, no. 3, pp. 884–888.

  66. 66.

    Hoffmann, L., Greiter, I., Wagner, A., Weiss, V., and Allefeld, G., Experimental Investigation of Heat Transfer in a Horizontal Tube Falling Film Absorber with Aqueous Solutions of LiBr with and without Surfactants, Int. J. Refr., vol. 19, no. 5, pp. 331–34

  67. 67.

    Kyung, I.S. and Herold, K.E., Performance of Horizontal Smooth Tube Absorber with and without 2-Ethylhexanol, Trans. ASME, J. Heat Transfer, 2002, vol. 124, pp. 177–183.

    Article  Google Scholar 

  68. 68.

    Kim, K.J. and Janule, V.P., Dynamic Surface Tension of Aqueous Lithium Bromide with 2-Ethyl-1-hexanol, Int. Comm. Heat Transfer, 1994, vol. 21, no. 6, pp. 839–848.

    Article  Google Scholar 

  69. 69.

    Castro, J., Leal, L., Perez-Segarra, C.D., and Pozo, P., Numerical Study of the Enhancement Produced in Absorption Processes Using Surfactants, Int. J. Heat Mass Transfer, 2004, vol. 47, nos. 14–16, pp. 3463–3476.

    Article  Google Scholar 

  70. 70.

    Nakoryakov, V.E., Bufetov, N.S., Grigoryeva, N.I., and Dekhtyar, R.A., The Effect of Surfactants on Absorption under Conditions of Heat Pumps and Refrigerators, Int. J. Low Carbon Technol., 2006, vol. 1, no. 3, pp. 273–284.

    Article  Google Scholar 

  71. 71.

    Nakoryakov, V.E., Grigoryeva, N.I., Bufetov, N.S., and Dekhtyar’, R.A., Heat and Mass Transfer Intensification at Steam Absorption by Surfactant Additives, Int. J. Heat Mass Transfer, 2008, vol. 51,isss. 21/22, pp. 51753–5181.

    Google Scholar 

  72. 72.

    Bogdanov, S.N., Burtsev, S.I., Ivanov, O.P., and Kupriyanova, A.V., Kholodil’naya tekhnika. Konditsionirovanie vozdukha. Svoistva veshchestv (Refrigerators. Air Conditioning. Properties of Substances), Reference book, Bogdanov, S.N., Ed., St. Petersburg: SPbGAKhPT, 1999.

    Google Scholar 

  73. 73.

    Dolotov, A.G. and Pyatko, V.Yu., Method of Calculating Thermodynamical and Thermophysical Properties of Aqueous LiBr Solution on EDC, in Kholodil’nye mashiny i termotransformatory (Refrigerators and Thermotransformers), Leningrad: LTIKhP, 1985.

    Google Scholar 

  74. 74.

    Grosman, E.R. and Naumov, S.E., Studying the Effect of Polyatomic Alcohols on Enhancement of Heat and Mass Transfer in Absorber of an Absorption LiBr Refrigerator, in Povyshenie effektivnosti kholodil’nykh mashin (Enhancement of Refrigerators), Leningrad: LTIKhP, 1981, pp. 84–88.

    Google Scholar 

  75. 75.

    Zaukanov, V.M., Baranenko, A.V., and Orekhov, I.I., Thermodynamic Processes in Refrigerators, in Kholodil’nye mashiny i termotransformatory (Refrigerators and Thermotransformers), Leningrad: LTIKhP, 1984, pp. 3–7.

    Google Scholar 

  76. 76.

    Yao, W., Bjurstrom, H., and Setterwall, F., Surface Tension of Lithium Bromide Solutions with Heat-Transfer Additives, J. Chem. Eng. Data, 1991, vol. 36, no. 1, pp. 96–98.

    Article  Google Scholar 

  77. 77.

    Yuan, Z. and Herold, K.E., Surface Tension of Pure Water and Aqueous Lithium Bromide with 2-Ethylhexanol, Appl. Therm. Eng., 2001, no. 21, pp. 881–897.

  78. 78.

    Kim, K.J., Berman, N.S., and Wood, B.D., Surface Tension of Aqueous Lithium Bromide +2-Ethyl-1-hexanol, J. Chem. Eng. Data, 1994, no. 39, pp. 122–124.

  79. 79.

    Kulankara, S. and Herold, K.E., Surface Tension of Aqueous Lithium Bromide with Heat/Mass Transfer Enhancement Additives. The Effect of Additive Vapor Transport, Int. J. Refr., 2002, no. 25, pp. 383–389.

  80. 80.

    Grigoryeva, N.I., About the Methods for Determination of Marangoni Numbers at Investigation of Absorption under the Conditions of Heat Pump Operation, Theor. Found. Chem. Eng., 2005, vol. 39, no. 6, pp. 561–565.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. E. Nakoryakov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakoryakov, V.E., Grigoryeva, N.I. Nonisothermal absorption in thermotransformers. J. Engin. Thermophys. 19, 196–271 (2010). https://doi.org/10.1134/S1810232810040028

Download citation

Keywords

  • Surfactant
  • Heat Pump
  • Sherwood Number
  • Initial Portion
  • Marangoni Number