Skip to main content

Activity coefficient models to describe isothermal vapor-liquid equilibrium of binary systems containing ionic liquids

Abstract

Isothermal vapor-liquid equilibrium data of binary mixtures containing ionic liquids are correlated using three activity coefficient models: UNIQUAC, Wilson, and NRTL. Twenty binary systems taken from the literature were selected for this study. A genetic algorithm is used to determine the interaction parameters for the three models. The results given by the three models have been compared with experimental data, and show that the UNIQUAC model is the best method to correlate and predict the vapor-liquid equilibrium of this type of systems.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lazzús, J.A., Estimation of Density as a Function of Temperature and Pressure for Imidazolium-Based Ionic Liquids Using a Multilayer Net with Particle Swarm Optimization, Int. J. Therm., 2009, vol. 30, pp. 883–909.

    Article  Google Scholar 

  2. 2.

    Yang, J., Peng, C., Liu, H., and Hu, Y., Calculation of Vapor-Liquid and Liquid-Liquid Phase Equilibria for Systems Containing Ionic Liquids Using a Lattice Model, Ind. Eng. Chem. Res., 2006, vol. 45, pp. 6811–6817.

    Article  Google Scholar 

  3. 3.

    Heintz, A., Recent Developments in Thermodynamics and Thermophysics of Non-Aqueous Mixtures Containing Ionic Liquids: A Review, J. Chem. Thermodyn., 2005, vol. 35, pp. 525–535.

    Article  Google Scholar 

  4. 4.

    Wang, T., Peng, C., Liu, H., Hu, Y., and Jiang, J., Equation of State for the Vapor-Liquid Equilibria of Binary Systems Containing Imidazolium-Based Ionic Liquids, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 4323–4329.

    Article  Google Scholar 

  5. 5.

    Kato, R. and Gmehling, J., Measurement and Correlation of Vapor-Liquid Equilibria of Binary Systems Containing the Ionic Liquids [EMIM] [(CF3SO2)2N], [BMIM] [(CF3SO2)2N], [MMIM][(CH3)2PO4] and Oxygenated Organic Compounds Respectively Water, Fluid Phase Equilib., 2005, vol. 231, pp. 38–43.

    Article  Google Scholar 

  6. 6.

    Nebig, S., Bölts, R., and Gmehling, J., Measurement of Vapor-Liquid Equilibria (VLE) and Excess Enthalpies (H E) of Binary Systems with 1-Alkyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide and Prediction of These Properties and γ Using Modified UNIFAC (Dortmund), Fluid Phase Equilib., 2007, vol. 258, pp. 178–188.

    Article  Google Scholar 

  7. 7.

    Orbey, H. and Sandler, S.I., Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, USA: Cambridge Univ. Press, 1998.

    Google Scholar 

  8. 8.

    Walas, S.M., Phase Equilibria in Chemical Engineering, Storeham: Butterworth Publ., 1985.

    Google Scholar 

  9. 9.

    Gmehling, J., Onken, U., and Arlt, W., Vapor-Liquid Equilibrium Data Collection. DECHEMA, Frankfurt: Verlag+Druckerei Friedrich Bischoff, 1982.

    Google Scholar 

  10. 10.

    Lazzús, J.A., Prediction of Sublimation Pressures from SCO2+Hydrocarbon Systems Using a Particle Swarm Optimization, J. Eng. Therm., 2009, vol. 18, pp. 306–314.

    Article  Google Scholar 

  11. 11.

    Domańska, U., Królikowski, M., and Paduszyński, K., Phase Equilibria Study of the Binary Systems (N-Butyl-3-MethylpyridiniumTosylate Ionic Liquid+an Alcohol), J. Chem. Thermodyn., 2009, vol. 41, pp. 932–938.

    Article  Google Scholar 

  12. 12.

    Abrams, D.S. and Prausnitz, J.M., Statical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AIChE J., 1975, vol. 21, pp. 116–128.

    Article  Google Scholar 

  13. 13.

    Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses, New York: Wiley, 1968.

    Google Scholar 

  14. 14.

    Wilson, G.M., Vapour-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., 1964, vol. 86, pp. 127–130.

    Article  Google Scholar 

  15. 15.

    Prausnitz, J.M., Lichtenthaler, R.N., and Gomes de Azevedo, E., Molecular Thermodynamics of Fluid-Phase Equilibria, New Jersey: Prentice Hall Int. Ser., 1999.

    Google Scholar 

  16. 16.

    Lazzús, J.A., ρ − TP Prediction for Ionic Liquids Using Neural Networks, J. Taiwan Inst. Chem. Eng., 2009, vol. 40, pp. 213–232.

    Article  Google Scholar 

  17. 17.

    Valderrama, J.O. and Robles, P.A., Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 1338–1344.

    Article  Google Scholar 

  18. 18.

    Valderrama, J.O., Sanga, W.W., and Lazzús, J.A., Critical Properties, Normal Boiling Temperatures, and Acentric Factor of Another 200 Ionic Liquids, Ind. Eng. Chem. Res., 2008, vol. 47, pp. 1318–1330.

    Article  Google Scholar 

  19. 19.

    Daubert, T.E., Danner, R.P., Sibul, H.M., and Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation, London: Taylor & Francis, 2000.

    Google Scholar 

  20. 20.

    Davis, L., Handbook of Genetic Algorithms, New York: Van Nostrand, 1991.

    Google Scholar 

  21. 21.

    Holland, J., Adaptation in Natural and Artificial Systems, USA: Univ. ofMichigan Press, 1975.

    Google Scholar 

  22. 22.

    Kim, K.W., Yun, Y., Yoon, J., Gen, M., and Yamazaki, G., Hybrid Genetic Algorithm with Adaptative Abilities for Resource-ConstrainedMultiple Project Scheduling, Comput. Ind., 2005, vol. 56, pp. 143–160.

    Article  Google Scholar 

  23. 23.

    Gopi, E.S., Algorithm Collections for Digital Signal Processing Applications Using Matlab, The Netherlands: Springer, 2007.

    MATH  Google Scholar 

  24. 24.

    Chemstations, ChemCAD: Process Flowsheet Simulator. Operating Manual, Houston: Chemstations, 2001.

    Google Scholar 

  25. 25.

    Tester, J. and Modell, M., Thermodynamics and Its Applications, New York: Prentice-Hall, 2000.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. A. Lazzús.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lazzús, J.A., Marín, J. Activity coefficient models to describe isothermal vapor-liquid equilibrium of binary systems containing ionic liquids. J. Engin. Thermophys. 19, 170–183 (2010). https://doi.org/10.1134/S1810232810030070

Download citation

Keywords

  • Ionic Liquid
  • Liquid Equilibrium
  • Engineer THERMOPHYSICS
  • UNIQUAC Model
  • Activity Coefficient Model