Skip to main content

On Corrsin equation closure

Abstract

Corrsin equation closure is done using the gradient hypothesis relating a two-point third-order correlation moment to a two-point second-order correlation function of a passive scalar field. A numerical locally isotropic turbulence model based on a closed system of Kolmogorov and Yaglom equations is constructed. A similarity solution of the Corrsin equation, which corresponds to infinitely high Reynolds and Peclet numbers, is constructed under assumption of constancy of Corrsin and Loitsiansky invariants. A numerical model of turbulence dynamics and temperature fluctuations behind a heated grid in a wind tunnel, which is based on Karman-Howarth and Corrsin closed equations, is developed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), vol. 2, St. Petersburg: Gidrometeoizdat, 1996.

    Google Scholar 

  2. 2.

    Hasselmann, K., Zur Deutung der dreifachen Geschwindigkeits korrelationen der isotropen Turbulenz, Dtsh. Hydrogr. Zs., 1958, no. 11, pp. 207–217.

  3. 3.

    Kostomakha, V.A., An Experimental Modeling of Isotropic Turbulence, in Dynamics of Continuous Medium, Novosibirsk: IGIL SO AN SSSR, 1985, iss. 70, pp. 92–104.

    Google Scholar 

  4. 4.

    Kostomakha, V.A., Structure of Isotropic and Locally Isotropic Turbulence, Cand. Sci. (phys.-math.) Dissertation, Novosibirsk, 1986.

  5. 5.

    Millionshchikov, M.D., Isotropic Turbulence in the Field of Turbulent Viscosity, Pis’ma Zh. Exp. Teor. Fiz., 1969, no. 8, pp. 406–411.

  6. 6.

    Millionshchikov, M.D., About Structure of Turbulent Viscosity for Isotropic Turbulence, Pis’ma Zh. Exp. Teor. Fiz., 1970, no. 11, pp. 203–206.

  7. 7.

    Lytkin, Y.M. and Chernykh, G.G., About One Way of Von Karman-Howarth Equation Closure, in Dynamics of Continuous Medium, Novosibirsk: IGIL SO AN SSSR, 1976, iss. 27, pp. 124–130.

    Google Scholar 

  8. 8.

    Lytkin, Y.M. and Chernykh, G.G., Calculation of Correlation Functions in Isotropic Turbulence, in Dynamics of Continuous Medium, Novosibirsk: IGIL SO AN SSSR, 1978, iss. 35, pp. 74–88.

    Google Scholar 

  9. 9.

    Batchelor, G.K. and Townsend, A.A., Decay of Isotropic Turbulence in Initial Period, Proc. Roy. Soc., 1948, A193, pp. 539–558.

    ADS  Google Scholar 

  10. 10.

    Townsend, A.A., The Structure of Turbulent Shear Flow, 2nd ed., Cambridge: Cambridge Univ., 1976.

    MATH  Google Scholar 

  11. 11.

    Domaradzki, J.A. and Mellor, G.L., A Simple Turbulence Closure Hypothesis for the Triple-Velocity Correlation Functions in Homogeneous Isotropic Turbulence Revisited, J. Fluid Mech., 1984, vol. 140, pp. 45–61.

    MATH  Article  ADS  Google Scholar 

  12. 12.

    Akatnov, N.I., About Closure of Second Order Two-Point Moments Equation for Homogeneous Isotropic Turbulence Description, in Hydrogasdynamics, Leningrad State Techn. Univ., 1990, pp. 31–39.

  13. 13.

    Akatnov, N.I and Bystrova, E.N., Calculation of Some Homogeneous Turbulence Characteristics Based on Solving the Karman-Howarth Equation Closure Using a Semi-Empirical Model, Tepl. Vys. Temp., 1999, vol. 37, no. 4, pp. 895–903.

    Google Scholar 

  14. 14.

    Oberlack, M. and Peters, N., Closure of the Two-Point Correlation Equation as a Basis for Reynolds Stress Models,Appl. Sci. Res., 1993, vol. 51, pp. 533–538.

    MATH  Article  Google Scholar 

  15. 15.

    Onufriev, A.T., About Model Probability Density Equation for Semi-Empirical Turbulence Transfer Theory. The Notes on Turbulence, Moscow: Nauka, 1994, pp. 117–127.

    Google Scholar 

  16. 16.

    Chernykh, G.G., Korobitsina, Z.L., and Kostomakha, V.A., Numerical Simulation of Isotropic Turbulence Dynamics, Int. J. Comput. Fluid Dyn., 1998, vol. 10, no. 2, pp. 173–182.

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Ling, S.C. and Huang, T.T., Decay ofWeak Turbulence, Phys. Fluids, 1970, no. 13, pp. 2912–2920.

  18. 18.

    Millionshchikov, M.D., The Decay of Homogeneous Isotropic Turbulence in Viscous Incompressible Fluid, Dokl. Akad. Nauk SSSR, 1939, no. 22, pp. 236–240.

  19. 19.

    Loitsiansky, L.G., Some Basic Laws for Isotropic Turbulent Flow, Trudy Tsentr. Aero-Gidrodin. Inst., 1939, Rept. no. 440.

  20. 20.

    Onufriev, A.T. and Pyrkova, O.A., The Problem on Weak Turbulence Decay in a Homogeneous Isotropic Field, Preprint of Moscow Physico-Technical Institute, Dolgoprudnyi, 2005, no. 1.

  21. 21.

    Onufriev, A.A., Onufriev, A.T., and Pyrkova, O.A., Approximate Solution of the Problem of Homogeneous Isotropic Turbulence Decay with Regard to the Intermittency in a Flow, Preprint of Moscow Physico-Technical Institute, Dolgoprudnyi, 2008, no. 1.

  22. 22.

    Frost, V.A., Calculation of Isotropic Turbulence Decay Using Hasselmann Approximation, Trudy Vserossiiskoi shkoly-seminara “Aerofizika i fizicheskaya mekhanika klassicheskikh i kvantovykh system,” (Proc. All-RussianWorkshop on Aerophysics and Physical Mechanics of Classical and Quantum Systems), Moscow, 2008, pp. 171–175.

  23. 23.

    Grebenev, V.N. and Oberlack, M.A., Geometric Interpretation of the Second-Order Structure Function Arising in Turbulence, Mathematical Physics, Analysis and Geometry, 2009, vol. 12, no. 1, pp. 1–18.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  24. 24.

    Barenblatt, G.I. and Gavrilov, A.A., On the Theory of Self-Similar Degeneracy of Homogeneous Isotropic Turbulence,Sov. Phys. J. Exp. Theor. Phys., 1974, no. 38, pp. 399–402.

  25. 25.

    Korneyev, A.I. and Sedov, L.I., Theory of Isotropic Turbulence and Its Comparison with Experimental Data, Fluid Mechanics—Soviet Research, 1976, no. 5, pp. 37–48.

  26. 26.

    Shumann, U. and Patterson, J., Numerical Study of Pressure and Velocity Fluctuations in Nearly Isotropic Turbulence, J. Fluid Mech., 1978, vol. 88, pp. 685–709.

    Article  ADS  Google Scholar 

  27. 27.

    George, W., The Decay of Homogeneous Isotropic Turbulence, Phys. Fluids, 1992, A4, pp. 1492–1509.

    MathSciNet  ADS  Google Scholar 

  28. 28.

    Speziale, C. and Bernard, P., The Energy Decay in Self-Preserving Isotropic Turbulence Revisited, J. Fluid Mech., 1992, vol. 241, pp. 645–667.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  29. 29.

    Chasnov, J., Computation of the Loitsiansky Integral in Decaying Isotropic Turbulence, Phys. Fluids, 1993, vol. 5, no. 11, pp. 2579–2581.

    MATH  Article  ADS  Google Scholar 

  30. 30.

    Mansour, N. and Wray, A., Decay of Isotropic Turbulence at Low Reynolds Number, Phys. Fluids, 1994, vol. 6, no. 2, pp. 808–814.

    MATH  Article  ADS  Google Scholar 

  31. 31.

    Metais, O. and Lesieur, M., Spectral Large-Eddy Simulation of Isotropic and Stably Stratified Turbulence, J. Fluid Mech., 1992, vol. 239, pp. 157–194.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  32. 32.

    Corrsin, S., The Decay of Isotropic Temperature Fluctuations in an Isotropic Turbulence, J. Aeronautical Sci., 1951, vol. 18, no. 12, pp. 417–423.

    MATH  MathSciNet  Google Scholar 

  33. 33.

    Mills, R.R., Kistler, A.L., O’Brien, V., and Corrsin, S., Turbulence and Temperature Fluctuations behind a Heated Grid, Tech. Note, NACA, N4288, Washington, 1958.

  34. 34.

    Warhaft, Z., Passive Scalars in Turbulent Flows, Ann. Rev. Fluid Mech., 2000, vol. 32, pp. 203–240.

    Article  MathSciNet  ADS  Google Scholar 

  35. 35.

    Antonia, R.A., Smalley, R.J., Zhou, T., Anselment, F., and Danaila, L., Similarity Solution of Temperature Structure Functions in Decaying Homogeneous Isotropic Turbulence, Phys. Rev. E, 2004, vol. 69, pp. 016305-1–016305-11.

    Article  ADS  Google Scholar 

  36. 36.

    Akatnov, N.I. and Bystrova, E.N., Usage of the Axially-Symmetric Turbulence for Calculating Statistical Characteristics of Pulsating Motion in a Flow with a Homogeneous Constant Velocity of Averaged Movement Sear, Tepl. Vys. Temp., 2000, vol. 38, no. 4, pp. 600–608.

    Google Scholar 

  37. 37.

    Frost, V.A., Ivenskikh, N.N., and Krasitskii, V.P., The Problem of Stochastic Description of Turbulent Micromixing and Combustion on the Base of Two-Point Probability Distribution Functions, Preprint of Inst. for Problems in Mechanics, Russ. Acad. Sci., Moscow, 2002, no. 699.

    Google Scholar 

  38. 38.

    Babenko, V.A. and Frost, V.A., Dependence of Scalar Dissipation on Chemical Conversions in Turbulent Flows, Preprint of Inst. of Applied Mechanics, Russ. Acad. Sci., 2007, no. 840.

  39. 39.

    Krasitskii, V.P. and Frost, V.A., Molecular Transfer in Turbulent Flows, Fluid Dyn., 2007, vol. 42, no. 2, pp. 190–200.

    Article  MathSciNet  ADS  Google Scholar 

  40. 40.

    Babenko, V.A. and Frost, V.A., Modeling of Turbulent Reacting Flows on the Base of Equation for Scalar Field Correlation Function, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 13/14, pp. 3314–3319.

    MATH  Article  Google Scholar 

  41. 41.

    Baev, M.K. and Chernykh, G.G., Numerical Modeling of a Turbulent Flow behind a Heated Grid, J. Appl. Mech. Techn. Phys., 2009, vol. 50, no. 3, pp. 459–465.

    Article  ADS  Google Scholar 

  42. 42.

    Kolmogorov, A.N., Energy Dissipation for Locally Isotropic Turbulence, Dokl. Akad. Nauk SSSR, 1941, vol. 32, no. 1, pp. 19–21.

    Google Scholar 

  43. 43.

    Yaglom, A.N., On Local Temperature Field Structure in a Turbulent Flow, Dokl. Akad. Nauk SSSR, 1949, vol. 69, no. 6, pp. 743–746.

    MATH  MathSciNet  Google Scholar 

  44. 44.

    Zhu, Y., Antonia, R.A., and Hosokava, I., Refined Similarity Hypotheses for Turbulent Velocity and Temperature Fields, Phys. Fluids, 1995, vol. 7, no. 7, pp. 1637–1648.

    Article  ADS  Google Scholar 

  45. 45.

    Antonia, R.A., Zhu, Y., Anselment, F., and Ould-Rous, M., Comparison between the Sum of Second-Order Velocity Structure Functions and the Second-Order Temperature Structure Function, Phys. Fluids, 1996, vol. 8, no. 11, pp. 3105–3111.

    Article  ADS  Google Scholar 

  46. 46.

    Saddoughi, S.G. and Veervalli, S.V., Local Isotropy in Turbulent Boundary Layers at High Reynolds Number, J. Fluid Mech., 1994, vol. 268, pp. 333–372.

    Article  ADS  Google Scholar 

  47. 47.

    Gibson, C.H. and Schwarz, W.H., the Universal Equilibrium Spectra of Turbulent Velocity and Scalar Fields, J. Fluid Mech., 1963, vol. 16,pt. 3, pp. 365–384.

    MATH  Article  ADS  Google Scholar 

  48. 48.

    Demidovich, B.P., Maron, I.A., and Shuvalova, E.Z., Chislennye metody analiza (Numerical Analysis Methods), Moscow: GIFML, 1963.

    Google Scholar 

  49. 49.

    Zavyalov, Yu.S., Kvasov, B.I., and Miroshnichenko, V.M., Metody splain-funktsii (Methods of Spline Functions),Moscow: Nauka, 1980.

    Google Scholar 

  50. 50.

    Demin, V.F., Dobrolyubov, L.V., and Stepanov, V.A., Sistemy programmirovaniya na Algole (Programming Systems in Algol), Moscow: Nauka, 1977.

    Google Scholar 

  51. 51.

    Golitsyn, G.S., On Turbulence Structure in the Region of Small Scales, Prikl. Math. Mekh., 1960, vol. 24, no. 6, pp. 1124–1129.

    Google Scholar 

  52. 52.

    Sreenivasan, K.R., On Local Isotropy of Passive Scalars in Turbulent Shear Flows, Proc. R. Soc. Lond. A, 1991, vol. 434, pp. 165–182.

    MATH  Article  ADS  Google Scholar 

  53. 53.

    Loitsiansky, L.G., Mekhanika zhidkosti i gaza (Fluid and GasMechanics), Moscow: Nauka, 1970.

    Google Scholar 

  54. 54.

    Sedov, L.I., Metody podobiya i razmernosti vmekhanike (Similarity and DimensionMethods in Mechanics), Moscow: Nauka, 1977.

    Google Scholar 

  55. 55.

    Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), 3d ed., Moscow: Nauka, 1986.

    Google Scholar 

  56. 56.

    Klimentenok, U.A., Korobitsyna, Zh.L., and Chernykh, G.G., About Numerical Realization of Loitsiansky-Millionshchikov Asymptotic Solution, Mat. Model., 1995, vol. 7, no. 1, pp. 69–80.

    MATH  MathSciNet  Google Scholar 

  57. 57.

    Davidson, P.A., Was Loitsyansky Correct? A Review of Arguments, J. Turbulence, 2000, vol. 1, pp. 2–14.

    Article  ADS  Google Scholar 

  58. 58.

    Grebenev, V.N. and Filimonov, M.Yu., About Preserving Loitsiansky Invariant in theModel of Homogeneous Isotropic Turbulence Dynamics, Vestnik NGU, Mat., Mekh., Inform., 2009, vol. 14, no. 4, pp. 28–45.

    Google Scholar 

  59. 59.

    Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to the Theory of Difference Schemes), Moscow: Nauka, 1971.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. K. Baev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baev, M.K., Chernykh, G.G. On Corrsin equation closure. J. Engin. Thermophys. 19, 154–169 (2010). https://doi.org/10.1134/S1810232810030069

Download citation

Keywords

  • Wind Tunnel
  • Turbulent Viscosity
  • Isotropic Turbulence
  • Passive Scalar
  • Engineer THERMOPHYSICS