Skip to main content

Identification of heat-exchange parameters under intensive pulse heating of a wire in a fluid

This is a preview of subscription content, access via your institution.


  1. 1.

    Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

    Google Scholar 

  2. 2.

    Pavlov, P.A., Dinamika vskipaniya silno peregretykh zhidkostei (Dynamics of Overheated Fluid Boiling), Sverdlovsk: Urals Branch, Acad. Sci. USSR, 1988.

    Google Scholar 

  3. 3.

    Volosnikov, D.V., Efremov, V.P., Skripov, A.A., Starostin, A.A., and Shishkin, A.V., Experimental Investigation of Heat Exchange in Thermally Unstable Polymer Structures, TVT, 2006, vol. 44, no. 3, pp. 465–471.

    Google Scholar 

  4. 4.

    Skripov, P.V., Smotritskiy, A.A., Starostin, A.A., and Shishkin, A.V., A Method of Controlled Pulse Heating: Applications, J. Eng. Therm., 2007, vol. 16, no. 3, pp. 155–163.

    Article  Google Scholar 

  5. 5.

    Mulyukov, R.R. and Pavlov, P.A., the Method of Simultaneous Measuring Thermal Conductivity and Specific Heat of a Short-Lived Fluid, IFZh, 1980, vol. 38, no. 4, pp. 716–720.

    Google Scholar 

  6. 6.

    Skripov, P.V., Starostin, A.A., and Volosnikov, D.V., Heat Transfer in Pulse Overheated Fluids, Dokl. Ross. Akad. Nauk, 2003, vol. 390, no. 2, pp. 192–195.

    MATH  Google Scholar 

  7. 7.

    Czel, B. and Grof, G., Genetic Algorithm-Based Method for Determination of Temperature-Dependent Thermophysical Properties, Int. J. Therm., 2009, vol. 30, no. 6. pp. 1975–1991.

    Article  Google Scholar 

  8. 8.

    Xie, H., Gu, H., Fujii, M., and Zhang, X., Short Hot Wire Technique for Measuring Thermal Conductivity and Thermal Diffusivity of Various Materials, Meas. Sci. Technol., 2006, vol. 17, pp. 208–214.

    Article  ADS  Google Scholar 

  9. 9.

    Garcia, S., Guynn, J., and Scott, E.P., Use of Genetic Algorithms in Thermal Property Estimation: Part II, Simultaneous Estimation of Thermal Properties, Num. Heat Transf. A, 1998, vol. 33, pp. 149–168.

    Article  Google Scholar 

  10. 10.

    Assael, M.J., Karagianndis, L., Malamataris, N., and Wakeham, W.A., The Transient Hot-Wire Technique: A Numerical Approach, Int. J. Therm., 1998, vol. 19, no. 2, pp. 379–389.

    Article  Google Scholar 

  11. 11.

    Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford: Clarendon Press, 1964.

    Google Scholar 

  12. 12.

    Zinovyev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Metallurgiya, 1989.

    Google Scholar 

  13. 13.

    Vagraftik, N.B., Filippov, L.P, Tarzimanov, A.A., and Totskii, E.E., Teploprovodnost’ zhidkostei i gazov (Thermal Conductivity of Liquids and Gases), Moscow: Izd. Standartov, 1978.

    Google Scholar 

  14. 14.

    Holland, J.H., Adaptation in Natural and Artificial Systems, Ann Abor: Univ. ofMichigan Press, 1975.

    Google Scholar 

  15. 15.

    Goldberg, D.E., Genetic Algorithms in Search Optimization and Machine Learning, Boston: Addison-Wesley, 1989.

    MATH  Google Scholar 

  16. 16.

    Raudensky, M., Woodbury, K.A., Kral, J., and Brezina, T., Genetic Algorithm in Solution of Inverse Heat Conduction Problems, Numerical Heat Transfer, B: Fundamentals, 1995, vol. 28, no. 3, pp. 293–306.

    Article  ADS  Google Scholar 

  17. 17.

    Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., Optimization by Simulated Annealing, Science, New Ser., 1983, vol. 220, no. 4598, pp. 671–680.

    MathSciNet  ADS  Google Scholar 

  18. 18.

    Kononchuk, D.O. and Okulovskii, Yu.S., Universal Support Intelligent Computing Package, GANS, Proc. 6th All-Russian Interinstitute Conf. of Junior Scientists, iss. 4, Mathematical Modeling and Software, St. Petersburg, 2009, pp. 151–157.

  19. 19.

    Baginskii, A.V. and Varchenko, A.A., Teplofizicheskie svoistva veshchestv i materialov (Thermophysical Properties of Substances and Materials), Novosibirsk: Institute of Thermophysics, SB, USSR Acad. Sci., 1979, pp. 132–148.

    Google Scholar 

  20. 20.

    Filippov, L.P., Nefedov, S.N., Kravchun, S.N., and Bakhareva, L.A., Izmer. Tekhn., 1980, no. 6, p. 33.

  21. 21.

    Baginskii, A.V. and Basin, A.S., Analysis of the Equivalent Impedance Technique and Results ofMeasuring Heat Conduction in Organic Liquids, in Teplofizicheskie svoistva rastvorov (Thermophysical Properties of Solutions), Novosibirsk: Institute of Thermophysics, SB, USSR Acad. Sci., 1983, pp. 70–86.

    Google Scholar 

  22. 22.

    Kravchun, S.N. and Lipase, A.A., Metod periodicheskogo nagreva v eksperimental’noi teplofizike (Method of Periodical Heating in Experimental Thermophysics), Kazan: Kazan Univ., 2006.

    Google Scholar 

  23. 23.

    Shangin, V.V., Ilyinykh, S.A., Puchinskis, S.E., Skripov, P.V., and Starostin, A.A., Device and Results of Monitoring Volatile Impurities in Technological Liquids by Pulse Thermal Testing, Gornyi Zh., 2008, no. 8, pp. 148–153.

  24. 24.

    Skripov, P.V., Method of Controlled Pulse Heating: Applications for Complex Fluids and Polymers, NATO Science for Peace and Security Series-A: Metastable Systems under Pressure, 2010, pp. 323–335.

Download references

Author information



Corresponding author

Correspondence to A. A. Starostin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gorbatov, V.I., Okulovskii, Y.S., Skripov, P.V. et al. Identification of heat-exchange parameters under intensive pulse heating of a wire in a fluid. J. Engin. Thermophys. 19, 144–153 (2010).

Download citation


  • Genetic Algorithm
  • Thermophysical Property
  • Pulse Heating
  • Inverse Heat Conduction Problem