Skip to main content

Prediction of sublimation pressures from SCO2+hydrocarbon systems using a particle swarm optimization


A method to predict the sublimation pressures of solid hydrocarbons using a biologically-deriver algorithm is presented. Seven binary gas-solid phase systems of supercritical carbon dioxide with hydrocarbons are considered in this study. The Peng-Robinson equation of state with the Wong-Sandler mixing rules are used to evaluate the fugacity coefficient on the systems. Then, particle swarm optimization is used for minimize the difference between calculated and experimental solubility, and the sublimation pressures are calculated from solubility data. The results show that the method presented is reliable enough and can be used with confidence to estimate the sublimation pressure of other hydrocarbons.

This is a preview of subscription content, access via your institution.


  1. 1.

    Neau, E., Garnier, S., and Avaullée, L.A., A Consistent Estimation of Sublimation Pressures Using a Cubic Equation of State and Fusion Properties, Fluid Phase Equilib., 1999, vol. 164, pp. 173–186.

    Article  Google Scholar 

  2. 2.

    Lazzús, J.A., Prediction of Solid Vapor Pressures for Organic and Inorganic Compounds Using a Neural Network, Thermochim. Acta, 2009, vol. 489, pp. 53–62.

    Article  Google Scholar 

  3. 3.

    Valderrama, J.O., The State of the Cubic Equations of State, Ind. Eng. Chem. Res., 2003, vol. 42, pp. 1603–1618.

    Article  Google Scholar 

  4. 4.

    Peng, D.Y. and Robinson, D.B., A New Two-Constant Equation of State, Ind. Eng. Chem. Fund., 1976, vol. 15, pp. 59–64.

    MATH  Article  Google Scholar 

  5. 5.

    Zhong, M., Han, B., Ke, J., Yan, H., and Peng, D.Y., A Model for Correlating the Solubility of Solids in Supercritical CO2, Fluid Phase Equilib., 1998, vol. 146, pp. 93–102.

    Article  Google Scholar 

  6. 6.

    Valderrama, J.O. and Zavaleta, J., Sublimation Pressure Calculated from High-Pressure Gas-Solid Equilibrium Data Using Genetic Algorithms, Ind. Eng. Chem. Res., 2005, vol. 44, pp. 4824–4833.

    Article  Google Scholar 

  7. 7.

    Faúndez, C.A., Díaz-Valdés, J., and Valderrama, J.O., Determining Sublimation Pressures from Solubility Data of Solids in Different Solvents, Thermochim. Acta, 2007, vol. 462, pp. 25–31.

    Article  Google Scholar 

  8. 8.

    Eberhart, R.C. and Kennedy, J., Proc. 6th Int. Symp. on Micro Machine and Human Science, Nagoya: IEEE Publishing, 1995, pp. 39–43.

    Book  Google Scholar 

  9. 9.

    Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm Intelligence, USA: Academic Press, 2001.

    Google Scholar 

  10. 10.

    Lazzús, J.A., Estimation of Density as a Function of Temperature and Pressure for Imidazolium-Based Ionic LiquidsUsing aMultilayerNet with Particle SwarmOptimization, Int. J. Therm., 2009, vol. 30, pp. 883–909.

    Article  Google Scholar 

  11. 11.

    Gopi, E.S., Algorithm Collections for Digital Signal Processing Applications Using Matlab, The Netherlands: Springer, 2007.

    MATH  Google Scholar 

  12. 12.

    Wong, D.S. and Sandler, S.I., A Theoretically CorrectMixing Rule for Cubic Equations of State, AIChE J., 1992, vol. 38, pp. 671–680.

    Article  Google Scholar 

  13. 13.

    Luo, Q. and Yi, D., A Co-Evolving Framework for Robust Particle Swarm Optimization, Appl. Math. Comput., 2008, vol. 199, pp. 611–622.

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Orbey, H. and Sandler, S.I., Modeling Vapor-Liquid Equilibria. Cubic Equations of State and Their Mixing Rules, USA: Cambridge Univ. Press, 1998.

    Google Scholar 

  15. 15.

    Walas, S.M., Phase Equilibria in Chemical Engineering, USA: Butterworth Publishing, 1985.

    Google Scholar 

  16. 16.

    Liu, X., Liu, H., and Duan, H., Particle Swarm Optimization Based on Dynamic Niche Technology with Applications to Conceptual Design, Adv. Eng. Soft., 2007, vol. 38, pp. 668–676.

    Article  Google Scholar 

  17. 17.

    Jiang, Y., Hu, T., Huang, C.C., and Wu, X., An Improved Particle Swarm Optimization Algorithm, Appl. Math. Comput., 2007, vol. 193, pp. 231–239.

    Article  Google Scholar 

  18. 18.

    Da, Y. and Xiurun, G., An Improved PSO-Based ANN with Simulated Annealing Technique, Neurocomputing, 2005, vol. 63, pp. 527–533.

    Article  Google Scholar 

  19. 19.

    Shi, Y. and Eberhart, R.C., Proc. IEEE International Conference on Evolutionary Computation, Piscataway: IEEE Press, 1998, pp. 69–73.

    Google Scholar 

  20. 20.

    Coelho, L.D. and Sierakowski, C.A., A Software Tool for Teaching of Particle Swarm Optimization Fundamentals, Adv. Eng. Soft., 2008, vol. 39, pp. 877–887.

    Article  Google Scholar 

  21. 21.

    Daubert, T.E., Danner, R.P., Sibul, H.M., and Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals. Data Compilation, London: Taylor & Francis, 2000.

    Google Scholar 

  22. 22.

    McHugh, M. and Paulaitis, M.E., Solid Solubilities of Naphthalene and Biphenyl in Supercritical Carbon Dioxide, J. Chem. Eng. Data, 1980, vol. 25, pp. 326–329.

    Article  Google Scholar 

  23. 23.

    Kurnik R.T., Holla, S.J., and Reid, R.C., Solubility of Solids in Supercritical Carbon Dioxide and Ethylene, J. Chem. Eng. Data, 1981, vol. 26, pp. 47–51.

    Article  Google Scholar 

  24. 24.

    Anitescu, G. and Tavlarides, L.L., Solubilities of Solids Supercritical Fluids I. New Quasistatic Experimental Method for Polycyclic Aromatic Hydrocarbons (PAHs) + Pure Fluids, J. Supercrit. Fluids, 1997, vol. 10, pp. 175–189.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. A. Lazzús.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lazzús, J.A. Prediction of sublimation pressures from SCO2+hydrocarbon systems using a particle swarm optimization. J. Engin. Thermophys. 18, 306 (2009).

Download citation


  • Particle Swim Optimization
  • Supercritical Carbon Dioxide
  • Solubility Data
  • Inertia Weight