Skip to main content

Numerical simulation of dynamics of turbulent wakes behind towed bodies in linearly stratified media

Abstract

A hierarchy of semiempirical turbulence models of second order is involved for the description of a fluid flow in a far turbulent wake behind a towed body. The most complicated model includes the differential equations for normal Reynolds stresses transfer as well as the equation for the triple correlations of fluctuations of the vertical velocity component. Results of calculations are represented. They demonstrate the dynamics of a far turbulent wake in a linearly stratified medium in comparison with dynamics of a far momentumless turbulent wake. Anisotropic decay of turbulence in a far wake behind a towed body is numerically investigated. A numerical model of passive scalar dynamics in turbulent wakes behind bodies moving in a linearly stratified medium is represented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ozmidov, R.V. and Nabatov, V.N., Hydrodynamical Model for a Turbulent Wake behind a Seamount, Izv. Atm. Oc. Phys., 1992, vol. 28, no. 9, pp. 981–987.

    Google Scholar 

  2. 2.

    Hassid, S., Collapse of Turbulent Wakes in Stable Stratified Media, J. Hydr., 1980, vol. 14, no. 1, pp. 25–32.

    Google Scholar 

  3. 3.

    Sysoeva, E.Ya. and Chashechkin, Yu.D., Vortex Structure of the Wake of a Sphere in a Stratified Fluid, Zh. Prikl. Mekh. Tehn. Fiz., 1986, no. 2, pp. 40–46.

  4. 4.

    Hopfinger, E.J., Flor, J.B., Chomaz, J.M., and Bonneton, P., Internal Waves Generated by a Moving Sphere and Its Wake in Stratified Fluid, Exps. Fluids, 1991, vol. 11, pp. 255–261.

    Article  ADS  Google Scholar 

  5. 5.

    Lin, Q., Boyer, D.L., and Fernando, J.S., Turbulent Wakes of a Linearly Stratified Flow Past a Sphere, Phys. Fluids A, 1992, vol. 4, no. 8, pp. 1687–1696.

    Article  ADS  Google Scholar 

  6. 6.

    Bonneton, P., Chomaz, J.M., and Hopfinger, E.J., Internal Waves Produced by the Turbulent Wake of a Sphere Moving Horizontally in a Stratified Fluid, J. Fluid Mech., 1993, vol. 254, pp. 23–40.

    Article  ADS  Google Scholar 

  7. 7.

    Chomaz, J.M., Bonneton, P., Butet, A., and Hopfinger, E.J., Vertical Diffusion of the Far Wake of a Sphere Moving Horizontally in a Stratified Fluid, Phys. Fluids A, 1993, vol. 5, no. 11, pp. 2799–2806.

    Article  ADS  Google Scholar 

  8. 8.

    Chashechkin, Yu.D., Internal Waves, Vortices and Turbulence in a Wake Past a Bluff Body in a Continuously Stratified Liquid, Preprints 4th Int. Symp. on Stratified Flows, Grenoble, Grenoble Inst. of Mech. 1994, vol. 2, B4, no. 29.

    Google Scholar 

  9. 9.

    Shishkina, O.D., The Wakes Regimes Influence on Hydrodynamic Characteristics of the Submerged Sphere in the Stratified Fluid, Preprints 4th Int. Symp. on Stratified Flows, Grenoble, Grenoble Inst. of Mech., 1994, vol. 3, A5, no. 39.

    Google Scholar 

  10. 10.

    Spedding, G.R., Browand, F.K., and Fincham, A.H., The Structure and Long-Time Evolution of Bluff Body Wakes in a Stable Stratification, Preprints 4th Int. Symp. on Stratified Flows, Grenoble, Grenoble Inst. of Mech., 1994, vol. 2, B4, no. 196.

    Google Scholar 

  11. 11.

    Voisin, B., Rayonnement des ondes internes de gravite. Application aux corps en mouvement, Univ. Pierre et Marie Curie, PhD Dissertation, 1991.

  12. 12.

    Onufriev, A.T., Turbulent Wake in a Stratified Medium, Zh. Prikl. Mekh. Tehn. Fiz., 1970, no. 5, pp. 68–72.

  13. 13.

    Chernykh, G.G., Fedorova, N.N., and Moshkin, N.P., Numerical Simulation of Turbulent Wakes, Russ. J. Theor. Appl. Mech., 1992, vol. 2, pp. 295–304.

    Google Scholar 

  14. 14.

    Moshkin, N.P., Fedorova, N.N., and Chernykh, G.G., On Numerical Modeling of Turbulent Wakes, Comp. Tech., 1992, vol. 1, no. 1, pp. 70–92.

    Google Scholar 

  15. 15.

    Chernykh, G.G., Moshkin, N.P., and Voropayeva, O.F., Turbulent Wakes in Stratified Fluids: Results of Numerical Experiments, Preprints 4th Int. Symp. on Stratified Flows, Grenoble, Grenoble Inst. of Mech., 1994, vol. 1, A2, no. 103.

    Google Scholar 

  16. 16.

    Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., Internal Waves Generated by Turbulent Wakes behind Towed and Self-Propelled Bodies in a Linearly Stratified Medium, Math. Model., 2000, vol. 12, no. 1, pp. 77–94.

    MATH  MathSciNet  Google Scholar 

  17. 17.

    Voropaeva, O.F., Moshkin, N.P., and Chernykh, G.G., Internal Waves Generated by Turbulent Wakes in a Stably Stratified Medium, Dokl. Phys., 2003, vol. 48, no. 9, pp. 517–521.

    Article  MathSciNet  ADS  Google Scholar 

  18. 18.

    Dzhaugashtin, K.E. and Shalabaeva, B.S., Three-Dimensional Wake in a Stratified Incompressible Fluid, Fluid Dyn., 1996, vol. 31, no. 4, pp. 539–544.

    MATH  Article  Google Scholar 

  19. 19.

    Spedding, G.R., Anisotropy in Turbulence Profiles of Stratified Wakes, Phys. Fluids, 2001, vol. 13, no. 8, pp. 2361–2372.

    Article  ADS  Google Scholar 

  20. 20.

    Gourlay, M.J., Arendt, S.C., Fritts, D.C., and Werne, J., Numerical Modelling of Initially Turbulent Wakes with Net Momentum, Phys. Fluids, 2001, vol. 13, no. 12, pp. 3782–3802.

    Article  ADS  Google Scholar 

  21. 21.

    Spedding, G.R., Vertical Structure in Stratified Wakes with High Initial Froude Number, J. Fluid Mech., 2002, vol. 454, pp. 71–112.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  22. 22.

    Domermuth, D.G., Rottman, J.W., Innis, G.E., and Novikov, E.A., Numerical Simulation of the Wake of a Towed Sphere in a Weakly Stratified Fluid, J. Fluid Mech., 2002, vol. 473, pp. 83–101.

    Article  ADS  Google Scholar 

  23. 23.

    Balandina, G.N., Papko, V.V., Sergeev, D.A., and Troitskaya, Y.I., Evolution of the Far Turbulent Wake behind a Body Towed in a Stratified Fluid with Large Reynolds and Froude Numbers, Izv. Ross. Akad. Nauk, Atm. Oc. Phys., 2004, vol. 40, no. 1, pp. 112–127.

    Google Scholar 

  24. 24.

    Babenko, V.A., Modeling Nearly Homogeneous Free Turbulence in Stratified and Reacting Flows, Doctoral Dissertation, Minsk: A.V. Lykov Heat and Mass Transfer Institute, Acad. Sci., 2001, p. 375.

    Google Scholar 

  25. 25.

    Meunier, P. and Spedding, G.R., Stratified Propelled Wakes, J. Fluid Mech., 2006, vol. 552, pp. 229–256.

    MATH  Article  ADS  Google Scholar 

  26. 26.

    Moshkin, N.P., Chernykh, G.G., and Fomina, A.V., Dynamics of Drag Turbulent Wake in a Linearly Stratified Media. Progress in Computational Heat and Mass Transfer, Proc. 4th ICCHMT, Bennacer, R., Mohamad, A.A., Ganaoui, M., and Sicard, J., Eds., Lavoisier, 2005, vol. 1, pp. 535–540.

  27. 27.

    Chernykh, G.G., Fomina, A.V., and Moshkin, N.P., Dynamics of Passive Scalar in Turbulent Wakes behind Bodies Moving in Linearly Stratified Media, Russ. J. Num. Anal. Math. Model., 2005, vol. 20, no. 5, pp. 403–423.

    MATH  Article  MathSciNet  Google Scholar 

  28. 28.

    Chernykh, G.G., Fomina, A.V., and Moshkin, N.P., Numerical Models of Turbulent Wake Dynamics behind a Towed Body in Linearly Stratified Media, Russ. J. Num. Anal. Math. Model., 2006, vol. 21, no. 5, pp. 395–424.

    MATH  Article  MathSciNet  Google Scholar 

  29. 29.

    Rodi, W., Examples of Calculation Methods for Flow and Mixing in Stratified Fluids, J. Geophys. Res., 1987, vol. 92, no. C5, pp. 5305–5328.

    Article  ADS  Google Scholar 

  30. 30.

    Chernykh, G.G. and Voropayeva, O.F., Numerical Modelling of Momentumless Turbulent Wake Dynamics in a Linearly Stratified Medium, Comp. Fluids, 1999, vol. 28, no. 3, pp. 281–306.

    MATH  Article  Google Scholar 

  31. 31.

    Aleksenko, N.V. and Kostomakha, V.A., Experimental Study of Axisymmetric Momentumless Turbulent Jet Flow, Zh. Prikl. Mech. Tekh. Fiz., 1987, no. 1, pp. 65–69.

  32. 32.

    Voropayeva, O.F., Ilyushin, B.B., and Chernykh, G.G., Numerical Simulation of the Far Momentumless Turbulent Wake in a Linearly Stratified Medium, Dokl. Phys., 2002, vol. 47, no. 10, pp. 762–766.

    Article  ADS  Google Scholar 

  33. 33.

    Chernykh, G.G. and Voropayeva, O.F., Second- and Third-Order Numerical Models of Momentumless Turbulent Wakes in Linearly Stratified Media, Russ. J. Numer. Anal. Math. Model., 2007, vol. 23, no. 6, pp. 539–549.

    Article  Google Scholar 

  34. 34.

    Ilyushin, B.B., Higher-Moment Diffusion in Stable Stratification, in Closure Strategies for Turbulent and Transitions Flows, Launder, B.E. and Sandham, N.D., Eds., Cambridge, Univ. Press, 2002, pp. 424–448.

    Google Scholar 

  35. 35.

    Voropaeva, O.F. and Chernykh, G.G., On Numerical Modelling of the Dynamics of Turbulized Fluid Regions in a Stratified Medium, Comp. Tech., 1992, vol. 1, no. 1, pp. 93–104.

    Google Scholar 

  36. 36.

    Voropaeva, O.F. and Chernykh, G.G., Numerical Model of the Dynamics of a Momentumless Turbulent Wake in a Pycnocline, J. Appl. Mech. Tech. Phys., 1997, vol. 38, no. 3, pp. 69–86.

    MATH  Google Scholar 

  37. 37.

    Gorodtsov, V.A., Similarity and Weak Closing Relations for Symmetric Free Turbulence, Fluid Dyn., 1979, no. 1, pp. 43–50.

  38. 38.

    Voropayeva, O.F., Numerical Modeling of Anisotropy Decay of Turbulence in Far Momentumless Wake in Stratified Fluid, Math. Model., 2008, vol. 19, no. 3, pp. 29–51.

    Google Scholar 

  39. 39.

    Ilyushin, B.B., Higher Moment Diffusion in Stable Stratification and Swirled Flows, J. Eng. Therm., 2000, vol. 10, no. 2, pp. 77–106.

    Google Scholar 

  40. 40.

    Lin, J.T. and Pao, Y.H., Wakes in Stratified Fluids, Ann. Rev. Fluid Mech., 1979, vol. 11, pp. 317–336.

    Article  ADS  Google Scholar 

  41. 41.

    Yanenko, N.N., The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables, New York: Springer, 1971.

    MATH  Google Scholar 

  42. 42.

    Belotserkovskii, O.M., Chislennoe modelirovanie v mekhanike sploshnoi sredy, (Numerical Modeling in Continuum Mechanics), Moscow: Nauka, 1984.

    Google Scholar 

  43. 43.

    Danilenko, A.Yu., Kostin, V.I., and Tolstykh, A.I., On an Implicit Algorithm for Computation of Flows of Homogeneous and Inhomogeneous Fluid, Preprint of the Computing Center, Russ. Acad. Sci., Moscow, 1985.

    Google Scholar 

  44. 44.

    Schetz, J.A., Injection and Mixing in Turbulent Flow, New York: Am. Inst. of Aeronautics and Astronautics, 1980.

    Google Scholar 

  45. 45.

    Voropayeva, O.F., Ilyushin, B.B., and Chernykh G.G., Numerical Modeling of a Far Momentumless Turbulent Wake in a Linearly Stratified Medium Using a Modified Equation for Transport of Dissipation Rate, Thermophys. Aeromech., 2003, vol. 10, no. 3, pp. 379–389.

    Google Scholar 

  46. 46.

    Rodi, W., Turbulence Models and Their Application in Hydraulics, University of Karlsruhe, 1980.

  47. 47.

    Shashmin, V.K., Hydrodynamics and Heat Transport in Turbulent Momentumless Wakes, Inzhen. Fiz. Zh., 1983, vol. 42, no. 4, pp. 640–647.

    Google Scholar 

  48. 48.

    Lytkin, Yu. M. and Chernykh, G.G., Flow Similarity with Respect to the Froude Density Number and Energy Balance in the Evolution of the Turbulent Mixing Area in a Stratified Medium, Din. Splosh. Sred., 1980, vol. 47, pp. 70–89.

    Google Scholar 

  49. 49.

    Chernykh, G.G., DiffusionModel for the Calculation of Turbulence Characteristics for Large Time Values in the Problem of the Evolution of Turbulent Mixing Area in a Linearly Stratified Medium, Chisl. Met. Mekh. Splosh. Sred., 1986, vol. 5, no. 1, pp. 130–143.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. G. Chernykh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chernykh, G.G., Fomina, A.V. & Moshkin, N.P. Numerical simulation of dynamics of turbulent wakes behind towed bodies in linearly stratified media. J. Engin. Thermophys. 18, 279 (2009). https://doi.org/10.1134/S1810232809040031

Download citation

Keywords

  • Internal Wave
  • Turbulent Energy
  • Engineer THERMOPHYSICS
  • Vertical Velocity Component
  • Turbulent Wake