Skip to main content

Numerical model of round turbulent jets


Using a second-order semi-empirical turbulence model that includes the differential equations for the normal Reynolds stresses transport, numerical simulation of the flow in round turbulent jets is performed. The calculation results are in good satisfactory accordance with the experimental data. The results of numerical analysis of the self-similar degeneration are presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    Wygnanski, I. and Fiedler, H., Some Measurements in the Self-Preserving Jet, J. Fluid Mech., 1969, vol. 38, pp. 577–612.

    Article  ADS  Google Scholar 

  2. 2.

    Rodi, W., The Prediction of Free Turbulent Boundary Layers by Use of Two-Equation Model of Turbulence, Ph. D. Dissertation, London, 1972.

  3. 3.

    Handbook of Turbulence, vol. 1: Fundamentals and Applications, Frost, W. and Moulden, T., Eds., New York, London: Plenum press, 1977.

    Google Scholar 

  4. 4.

    Schetz, J. A., Injection and Mixing in Turbulent Flow, New York, New York Univ., 1980. (Progress in astronautics and aeronautics; vol. 68).

    Google Scholar 

  5. 5.

    Rodi, W., Turbulence Models and Their Application in Hydraulics, Karlsruhe Univ., 1980.

  6. 6.

    Launder, B.E. and Morse, A., Numerical Prediction of Axisymmetric Free Shear Flows with a Second-Order Reynolds Stress Closure, Symposium on Turbulent Shear Flows, University Park, Pa., April 18–20, 1977, Proceedings, vol. 1, pp. 421–430.

  7. 7.

    Abramovich, G.N., Girshovich, T.A., Krasheninnikov, S. Yu., Sekundov, A.N., and Smirnova, I.P., Teoriya turbulentnykh strui (The Theory of Turbulent Jets), Moscow: Nauka, 1984.

    Google Scholar 

  8. 8.

    Panchapakesan, N.R. and Lumley, J.L., Turbulence Measurements in Axisymmetric Jets of Air and Helium, Part 1: Air Jet, J. Fluid Mech., 1993, vol. 246, pp. 197–223.

    Article  ADS  Google Scholar 

  9. 9.

    Amielh, M., Djeridane, T., Anselmet, F., and Fulachier, L., Velocity Near-Field of Variable Density Turbulent Jets, Intern. J. Heat Mass Transfer, 1996, vol. 39, no. 10, pp. 2149–2164.

    Article  Google Scholar 

  10. 10.

    Gharbi, A., Ruffin, E., Anselmet, F., and Schiestel, R., Numerical Modelling of Variable Density Turbulent Jets, Intern. J. Heat Mass Transfer, 1996, vol. 39, no. 9, pp. 1865–1882.

    Article  Google Scholar 

  11. 11.

    Piquet, J., Turbulent Flows: Models and Physics, Berlin: Springer-Verlag, 1999.

    MATH  Google Scholar 

  12. 12.

    Alekseenko, S.V., Bilsky, A.V., and Markovich, D.M., Application of the Method of Numerical Trace Visualization for the Analysis of Turbulent Flows with Periodic Component, Pribory i tekhnika eksperimenta (Instruments and Technology of Experiment), 2004, no. 5, pp. 145–153.

  13. 13.

    Alekseenko, S.V., Bilsky, A.V., Dulin, V.M., Ilyushin, B.B., and Markovich, D.M., Non-Intrusive Determination of Turbulent Energy Balance in Free and Confined Jet Flows, Proc. of the 4th Intern. Symp. on Turbulence and Shear Flow Phenomena (TSFP-4), Williamsburg, VA, USA, June 27–29, 2005, pp. 605–610.

  14. 14.

    Ilyushin, B.B. and Krasinsky, D.B., Large Eddy Simulation of the Turbulent Round Jet Dynamics, Teplofizika i aeromekhanika, 2006, vol. 13, no. 1, pp. 49–61 [Thermophysics and Aeromechanics (Engl. transl.), vol. 13, no. 1, pp. 43–54].

    ADS  Google Scholar 

  15. 15.

    Demenkov, A.G., Ilyushin, B.B., and Chernykh, G.G., Numerical Simulation of Axisymmetric Turbulent Jets, Journal of Applied Mechanics and Technical Physics, 2008, vol. 49, no. 5, pp. 749–753.

    Article  ADS  Google Scholar 

  16. 16.

    Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (The Mechanics of Liquid and Gas), Moscow: Nauka, 1987.

    Google Scholar 

  17. 17.

    Vasil’ev, O.F., Demenkov, A.G., Kostomakha, V.A., and Chernykh, G.G., Numerical Simulation of a Swirling Turbulent Wake after a Self-Propelled Body, Dokl. RAN, 2001, vol. 376, no. 2, pp. 195–199.

    Google Scholar 

  18. 18.

    Chernykh, G.G., Demenkov, A.G., and Kostomakha, V.A., Swirling Turbulent Wake behind a Self-Propelled Body, Intern. J. of Comput. Fluid Dynamics, 2005, vol. 19, no. 5, pp. 370–379.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. G. Demenkov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demenkov, A.G., Ilyushin, B.B. & Chernykh, G.G. Numerical model of round turbulent jets. J. Engin. Thermophys. 18, 49–56 (2009).

Download citation


  • Reynolds Stress
  • Turbulent Wake
  • Engineering THERMOPHYSICS
  • Nozzle Exit Section
  • Reynolds Stress Closure