Skip to main content

Development of the diffusion-inertia model of particle deposition in turbulent flows


There is presented a modification of the diffusion-inertia model that describes the distribution and deposition of low-inertia particles in turbulent near-wall flows. For the transport equation of the dispersed phase concentration, there is proposed a new wall function that takes into account the nonequilibrium effects and nonlocality of the turbulent transport of the dispersed phase in the near-wall zone caused by the particles’ inertia. This allowed widening the applicability limits of the diffusion-inertia model even for particles with a relaxation time with a magnitude of several hundred. The calculation results for the rate of the particles’ deposition from the turbulent flow to the walls in a round pipe are in good accord with the literature experimental data and the data of direct numerical simulation.

This is a preview of subscription content, access via your institution.


  1. 1.

    Zaichik, L.I. and Alipchenkov, V.M., Statisticheskie modeli dvizheniya chastits v turbulentnoi zhidkosti (Statistical Models of the Particles Motion in a Turbulent Liquid), Moscow: Fizmatlit, 2007.

    Google Scholar 

  2. 2.

    Volkov, E.P., Zaichik, L.I., and Pershukov, V.A., Modelirovanie goreniya tvyordogo topliva (Modeling of Solid-Fuel Burning), Moscow: Nauka, 1994.

    Google Scholar 

  3. 3.

    Zaichik, L.I., Soloviev, S.L., Skibin, A.P., and Alipchenkov, V.M., A Diffusion-Inertia Model for Predicting Dispersion of Low-Inertia Particles in Turbulent Flow, The 5th International Conference on Multiphase Flow, Yokohama, Japan, Paper no. 220, 2004.

  4. 4.

    Schiller, L., and Naumann, A., Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Ver. Deut. Ind., 1933, vol. 77, pp. 318–320.

    Google Scholar 

  5. 5.

    Wang, Q., Squires, K.D., Chen, M., and McLaughlin, J.B., On the Role of the Lift Force in Turbulence Simulations of Particle Deposition, Int. J. Multiphase Flow, 1997, vol. 23, pp. 749–763.

    MATH  Article  Google Scholar 

  6. 6.

    Martinuzzi, R. and Pollard, A., Comparative Study of Turbulence Models in Predicting Turbulent Pipe Flow. Part II: Reynolds Stress and k-ɛ Models, AIAA Journal, 1989, vol. 29, pp. 1714–1721.

    Google Scholar 

  7. 7.

    Launder, B.E. and Spalding, D.B., Mathematical Models of Turbulence, New York: Academic Press, 1972.

    MATH  Google Scholar 

  8. 8.

    Myong, H.K. and Kasagi, N., A New Approach to the Improvement of k-ɛ Turbulence Model for Wall-Bounded Shear Flows, JSME Int. J (Series II), 1990, vol. 33, pp. 63–72.

    ADS  Google Scholar 

  9. 9.

    Hrenya, C.M., Bolio, E.J., Chakrabarti, D., and Sinclair, J.L., Comparison of Low Reynolds Number k-ɛ Turbulence Models in Predicting Fully Developed Pipe Flow, Chemical Engineering Science, 1995, vol. 50, no. 12, pp. 1923–1941.

    Article  Google Scholar 

  10. 10.

    Sikovsky, D.Ph., Generalized Wall Functions for the Turbulent Flows with Strong Adverse Pressure Gradient, Turbulence, The 4th Int. Symp.Heat and Mass Transfer 4, ed. by K. Hanjalic, 2003, Antalya, Turkey, pp. 614–621.

  11. 11.

    Zaichik, L.I., Gasilov, V.A., Goryachev, V.D., and Eroshenko, V.M., A Continuous Method of Modeling of the Fine-Dispersed Turbulent Flows with Burning and Phase Transformations, in Teploobmen v sovremennoi tekhnike (Heat Exchange in Modern Technology), Institute of Computational Technologies, Moscow, 1998, pp. 263–278.

    Google Scholar 

  12. 12.

    Reist, P.C., Introduction to Aerosol Science, New York: Macmillan, 1984.

    Google Scholar 

  13. 13.

    Laufer, J., The Structure of Turbulence in Fully Developed Flow, NACA Technical Report 1174, 1954.

  14. 14.

    Schildknecht, M., Miller, J.A., and Meier, G.E., The Influence of Suction on the Structure of Turbulence in Fully Developed Pipe Flow, J. Fluid Mech., 1979, vol. 90, pp. 67–107.

    Article  ADS  Google Scholar 

  15. 15.

    McKeon, B.J. and Morrison, J.F., Asymptotic Scaling in Turbulent Pipe Flow, Phil. Trans. R. Soc. A, 2007, vol. 365, pp. 771–787.

    MATH  Article  ADS  Google Scholar 

  16. 16.

    Kim, K.C. and Adrian, R.J., Very Large-Scale Motion in the Outer Layer, Phys. Fluids, 1999, vol. 11, pp. 417–422.

    MATH  Article  MathSciNet  ADS  Google Scholar 

  17. 17.

    Liu, B.Y.H. and Agarwal, J.K., Experimental Observation of Aerosol Deposition in Turbulent Flow, J. Aerosol Sci., 1974, vol. 5, pp. 145–155.

    Article  Google Scholar 

  18. 18.

    McCoy, D.D. and Hanratty, T.J., Rate of Deposition of Droplets in Annular Two-Phase Flow, Int. J. Multiphase Flow, 1977, vol. 3, pp. 319–331.

    Article  Google Scholar 

  19. 19.

    Marchioli, C., Picciotto, M., and Soldati, A., Influence of Gravity and Lift on Particle Velocity Statistics and Transfer Rates in Turbulent Vertical Channel Flow, Int. J. Multiphase Flow, 2007, vol. 33, pp. 227–251.

    Article  Google Scholar 

  20. 20.

    Marchioli, C., Giusti, A., Salvetti, M.V., and Soldati, A., Direct Numerical Simulation of Particle Wall Transfer and Deposition in Upward Turbulent Pipe Flow, Int. J. Multiphase Flow, 2003, vol. 29, pp. 1017–1038.

    MATH  Article  Google Scholar 

  21. 21.

    McLaughlin, J.B., Aerosol Particle Deposition in Numerically Simulated Channel Flow, Phys. Fluids A, 1989, vol. 1, pp. 1211–1224.

    Article  ADS  Google Scholar 

  22. 22.

    Chen, M. and McLaughlin, J.B., A New Correlation for the Aerosol Deposition Rate in Vertical Ducts, J. Colloid and Interface Sci., 1995, vol. 169, pp. 437–455.

    Article  Google Scholar 

  23. 23.

    Kader, B.A. and Yaglom, A.M., Similarity Laws for the Near-Wall Turbulent Flows, in Itogi nauki i tekhniki, Mekhanika zhidkosti i gaza (Results in Science and Technology, Mechanics of Liquid and Gas), 1980, no. 15, pp. 81–155.

  24. 24.

    Young, J.B. and Leeming, A.D., A Theory of Particle Deposition in Turbulent Pipe Flow, J. Fluid Mech., 1997, vol. 340, pp. 129–159.

    MATH  Article  ADS  Google Scholar 

  25. 25.

    Geshev, P.I., A Linear Model of the Near-Wall Transport, Preprint no. 73-81 of the Institute of Thermophysics of the SB of the USSR Academy of Sciences, Novosibirsk, 1981.

Download references

Author information



Corresponding author

Correspondence to D. Ph. Sikovsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Demenkov, A.G., Ilyushin, B.B., Sikovsky, D.P. et al. Development of the diffusion-inertia model of particle deposition in turbulent flows. J. Engin. Thermophys. 18, 39–48 (2009).

Download citation


  • Turbulence Kinetic Energy
  • Direct Numerical Simulation
  • Wall Function
  • Turbulent Transport
  • Viscous Sublayer