Skip to main content
Log in

Status quo and prospects of development of chemical and sorption heat engines in the Russian federation and the Republic of Belarus

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This paper examines basic principles of the operation of chemical and adsorption heat engines and their advantages and new aspects and reviews the status quo of sorption technologies in different countries and their use in Russia and in the Republic of Belarus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carnot, S., Réflexions sur la puissance motrice du feu et sur les maschines propres à développer cette puissance, Paris, 1824.

  2. Alefeld, G. and Radermacher, R., Heat Conversion Systems, Boca Raton, CRC Press, 1994.

    Google Scholar 

  3. Proceedings of the Annual Meeting of the RAS, Vestn. Ross. Akad. Nauk, 2006, vol. 76, no. 5, pp. 3–46.

  4. Raldow, W.M. and Wentworth, W.E., Chemical Heat Pumps—A Basic Thermodynamic Analysis, Solar Energy, 1979, vol. 23, pp, 75–79.

    Article  ADS  Google Scholar 

  5. Rittinger, P., Theoretisch-praktische Abhandlung ueber ein fur alle Gattungen von Fluessigkeiten anwendbares neues Verdampfungsverfahren mittelst einer und derselben Waermemenge, welche zu diesem Behufe durch Wasserkraft in ununterbrochenen Kreislauf versetzt wird. Mit spezieller Ruecksicht auf den Salzsiedeproze dargestellt, Verlag von Friedrich Manz, Wien, 1855.

    Google Scholar 

  6. Vasiliev, L.L., Ecologically Clean Refrigerating Fluids and Refrigeration Cycles for the Republic of Belarus, Energoeffektivnost, 2005, no. 8, pp. 21–23.

  7. Vasiliev, L.L. and Kanonchik, L.E., Sorption Engines As Efficient Energy Saving Technology, Energoeffektivnost, 2002, no. 7, pp. 14–16.

  8. Vasiliev, L.L., Filatova, O.S., and Antukh, A.A., New Technologies of Efficient Use of Natural Gas in the Republic of Belarus, Energoeffektivnost, 2007, no. 1, pp. 8–11.

  9. Karapetyants, M.F., Khimisheskaya Termodinamika (Chemical Thermodynamics), Moscow: Khimiya, 1978.

    Google Scholar 

  10. Felli, M., Absorption Refrigeration Thermodynamics, ASHRAE Trans., 1983, pt. 1A, no. 2748, pp. 234–241.

  11. Meunier, F., Second-Law Analysis of a Solid Adsorption Heat Pump Operating on Reversible Cascade Cycles: Application to the Zeolite-Water Pair, Heat Recovery Systems, 1985, vol. 5, pp. 133–141.

    Article  Google Scholar 

  12. Tozer, R.M. and James, I.W., Fundamental Thermodynamics of Ideal Adsorption Cycles, Int. J. Refrig., 1997, vol. 20, no. 2, pp. 120–135.

    Article  Google Scholar 

  13. Sharonov, V.E. and Aristov, Yu.I., Chemical and Adsorption Heat Pumps: Comments on the Second Law Efficiency, Chem. Eng. J., 2007, vol. 7, no. 8.

  14. Tchernev, D., A Waste Heat Driver Automotive Air Conditioning System, Proc. Int. Sorption Heat Pump Conf., Munich, 1999, pp. 65–70.

  15. Jones, B.J. and Lambert, M.A., Adsorbent-Refrigerant Selection for Automotive Adsorption Heat Pump, AIAA, 2004, pp. 9286–9297.

  16. Lu, Y.Z., Wang, R.Z., Zhang, M., and Jiangzhou, S., Adsorption Cold Storage System with Zeolite-Water Working Pair Used for Locomotive Air Conditioning, Energy Conversion Management, 2003, vol. 44, pp. 1733–1743.

    Article  Google Scholar 

  17. Wang, L.W., Wang, R.Z., Wu, J.Y., and Wang, K., Compound Adsorbent for Adsorption Ice Maker on Fishing Boats, Int. J. Refrig., 2004, vol. 27, pp. 401–408.

    Article  Google Scholar 

  18. Lambert, M.A., and Jones, B.J. Review of Regenerative Adsorption Heat Pumps, J. Thermophys. Heat Transfer, 2005, vol. 19, no. 4, pp. 471–493.

    Article  Google Scholar 

  19. Okunev, B.N. and Safonov, M.S., Detailed Analysis of Production of Entropy and Improvement of the Thermodynamic Cycle of the Adsorption Refrigerating Unit, Inzh.-Fiz. Zh., vol. 79, no. 4, pp. 146–152.

  20. Goetz, V. and Guillot, A., An Open Activated Carbon/CO2 Sorption Cooling System, Ind. Eng. Chem. Res., 2001, vol. 40, pp. 2904–2913.

    Article  Google Scholar 

  21. El-Sharkawy, I.I., Kuwahara, K., Saha, B.B., et al., Experimental Investigation of Adsorption of Ethanol onto Activated Carbon Fibers for Possible Application in Adsorption Cooling Systems, Appl. Thermal Eng., 2006, vol. 26, nos. 8–9, pp. 859–865.

    Article  Google Scholar 

  22. Fujioka, K., Sekiguchi, T., and Kato, Yu., Numerical Investigation of Reaction and Thermal Characteristics of Reactor Beds for Gas-Solid Chemical Heat Pumps, Proc. HPC-06, September 12–14, 2006, pp. 41–42.

  23. Banker, N.D., Srinivasan, K., and Prasad, M., Performance Analysis of Activated Carbon + HFC 134a Adsorption Coolers, Carbon, 2004, vol. 42, pp. 113–123.

    Article  Google Scholar 

  24. Spinner, B., Ammonia-Based Thermochemical Transformers, Heat Recovery Systems, 1993, vol. 13, no. 4, pp. 301–307.

    Article  Google Scholar 

  25. Srivastava, N.C. and Eames, I.W., A Review of Adsorbents and Adsorbates in Solid-Vapor Adsorption Heat Pump Systems, Appl. Thermal Eng., 1998, vol. 18, pp. 707–714.

    Article  Google Scholar 

  26. Meunier, F., Solid Sorption Heat Powered Cycles for Cooling and Heat Pumping Applications, Appl. Thermal Eng., 1998, vol. 18, pp. 715–729.

    Article  Google Scholar 

  27. Pons, M., Meunier, F., Cacciola, G., Critoph, R.E., Groll, M. Puiganer, L., Spinner, B., Restuccia, G., and Ziegler, F., Thermodynamics-Based Comparison of Sorption System for Cooling and Heat Pumping, Int. J. Refrig., 1999, vol. 22, pp. 5–17.

    Article  Google Scholar 

  28. Cacciola, G. and Restuccia, G., Adsorption Heat Pumps: A New Way for Energy Saving and CFCs Replacement, Adsorption and Its Application in Industry and Environmental Protection Studies in Surface Science and Catalysis, Amsterdam: Elsevier, 1999, vol. 2, pp. 949–978.

    Chapter  Google Scholar 

  29. Meunier, F. and Goetz, V., Energy Storage Comparison of Sorption Systems for Cooling and Refrigeration, Solar Energy, 2001, vol. 71, no. 1, pp. 47–55.

    Article  Google Scholar 

  30. Dieng, A.O. and Wang R.Z., Literature Review on Solar Adsorption Technologies for Ice-Making and Air Conditioning Purposes and Recent Developments in Solar Technology, Renewable Sustainable Energy Rev., 2001, vol. 5, pp. 313–342.

    Article  Google Scholar 

  31. Ziegler, F., State of the Art in Sorption Heat Pumping and Cooling Technologies, Int. J. Refrig., 2002, vol. 5, pp. 450–459.

    Article  MathSciNet  Google Scholar 

  32. Critoph, R. and Yang, Y., Review of Trends in Solid Sorption Refrigeration and Heat Pumping Technology, Proc. Inst. Mech. Eng., Part E. J. Mech. Proc. Eng., 2005, vol. 219, pp. 1–16.

    Google Scholar 

  33. Wang, R.Z. and Oliveira, R.G., Adsorption Refrigeration—An Efficient Way to Make Good Use of Waste Heat and Solar Energy, Progr. Energy Combustion Sci., 2006, vol. 32, pp. 424–458.

    Article  Google Scholar 

  34. Dawoud, B., A Hybrid Solar-Assisted Adsorption Cooling Unit for Vaccine Storage, Renewable Energy, 2007, vol. 32, pp. 947–964.

    Article  Google Scholar 

  35. Khan, M.Z.I., Saha, B.B., Alam, K.C.A., Akisawa, A., and Kashiwagi, T., Study on Solar/Waste Heat Driven Multi-bed Adsorption Chiller with Mass Recovery, Renewable Energy, 2007, vol. 32, no. 3, pp. 365–381.

    Article  Google Scholar 

  36. Nunez, T., Henning, H.-M., and Mittelback, W., Adsorption Cycle Modeling: Characterization and Comparison of Materials, Int. Sorption Heat Pump Conf., Munich, 1999, pp. 209–217.

  37. Aristov, Yu.I., An Optimal Sorbent for Adsorption Heat Pumps: Thermodynamic Requirements and Molecular Design, 6th Int. Seminar on Heat Pipes, Heat Pumps, and Refrigerators, Minsk, 2005, pp. 342–353.

  38. Aristov, Yu.I., New Composite Adsorbents for Conversion and Storage of Low Temperature Heat: Activity in the Boreskov Institute of Catalysis, J. Heat Transfer Soc., 2006, vol. 45, no. 192, pp. 12–19.

    Google Scholar 

  39. Meunier, F., Sorption Contribution to Climate Change Mitigation, Int. Conf. Sorption Heat Pumps, Shanghai, 2002, pp. 1–9.

  40. Aristov, Yu.I., Some Environmental and Economic Aspects in the Use of Adsorption Heat Devices in Russia, Khim. Interes. Ust. Razv., 2004, vol. 12, pp. 751–755.

    Google Scholar 

  41. Vasiliev, L.L., Kanonchik, L.E., and Antukh, A.A., Recent Thermodynamic Cycles in Energy Engineering: A Method to Decrease Carbon Acid Gas Emission to Atmosphere and Increase the COP of Electric Stations, Energoeffektivnost, 2002, no. 11, pp. 16–18.

  42. Aristov, Yu.I., Restuccia, G., Cacciolaal, G., and Parmon, V.N., A Family of New Working Materials for Solid Sorption Air Conditioning Systems, Appl. Thermal Eng., 2002, vol. 22, no. 2, pp. 191–204.

    Article  Google Scholar 

  43. Restuccia, G., Arisotv, Yu.I., Maggio, G., Cacciola, G., and Tokarev, M.M., Performance of Sorption Systems Using New Selective Water Sorbents, Int. Sorption Heat Pump Conf., Munich, 1999, pp. 219–223.

  44. Laue, H.J., Regional European Report: Heat Pumps—Status and Trends, Int. J. Refrig., 2002, vol. 25, pp. 414–420.

    Article  Google Scholar 

  45. Lazarin, R., Heat Pump Technology: State of the Art, 5th Int. Conf. on Sustainable Energy Technologies, Vicenza, 2006, pp. 105–110.

  46. http://energyoutlet.com.

  47. Matsushita, M. et al., Adsorption Chiller Using Low-temperature Heat Sources, Energy Conservation, 1987, vol. 39, no. 10, p. 96.

    Google Scholar 

  48. Yonezawa, Y. et al., Adsorption Refrigeration System, US Patent no. 4881376, 1989.

  49. Liu, Y.L., Wang, R.Z., and Xia, Z.Z. Experimental Performance of a Silica Gel-Water Adsorption Chiller, Appl. Thermal Eng., 2005, vol. 25, pp. 359–375.

    Article  Google Scholar 

  50. Freni, A., Russo, F., Vasta, S., Tokarev, M.M., Aristov, Yu.I., and Restuccia, G. An Advanced Solid Sorption Chiller Using SWS-1L, Appl. Thermal Eng., 2007, vol. 27, no. 13, pp. 2200–2204.

    Article  Google Scholar 

  51. Nunez, T., Mittelback, W., and Henning, H.-M., Development of an Adsorption Chiller and Heat Pump for Domestic Heating and Air-conditioning Applications, Appl. Thermal Eng., 2007, vol. 27, no. 13, pp. 2205–2212.

    Article  Google Scholar 

  52. Vasiliev, L.L., Mishkinis, D.A., Antuh, A.A., and Valilyev, L.L., Jr., Solar-Gas Solid Sorption Refrigerator, Adsorption, 2001, vol. 7, pp. 149–161

    Article  Google Scholar 

  53. Vasiliev, L.L., Gulko, N.V., and Khaustov, V.M., Solid Adsorption Refrigerators with Active Carbon-Acetone and Carbon-Ethanol Pairs, Solid Sorption Symp., Paris, 1992, pp. 92–99.

  54. Schweigler, Ch., Design and Operation of a Solar Heating and Cooling System with Absorption Chiller and Latent Heat Storage, Proc. 2nd Int. Conf. on Solar Air Conditioning, Tarragona, 2007, pp. 50–55.

  55. Vasiliev, L.L., Mishkinis, D.A., and Vasiliev, L.L., Jr., Complex Compound/Ammonia Coolers, SAE Technical Papers Series 961462, 26th Int. Conf. on Environmental Systems, Monterey, 1996.

  56. Berntsson, Th., Heat Sources—Technology, Economy and Environment. International System in a Green Building, Int. J. Refrig., 2002, vol. 25, pp. 428–438.

    Article  Google Scholar 

  57. Nakoryakov, V.E., Suslov, V.I., and Aristov, Yu.I., Report on the Integration Project of the Siberian Branch of the Russian Academy of Sciences no. 166 for 2004–2006, Novosibirsk, 2006.

  58. Aristov, Yu.I., Chalayev, D.M., Dawoud, B., Heifets, L.I., Popel, O.S., and Restuccia, G., Solar Driven Adsorptive Chiller: At the Interfaces between Chemical and Thermal Engineering, Chem. Eng. J., 2007, vol. 128, no. 5, pp. 845–853.

    Google Scholar 

  59. Aristov, Yu. I., Thermodynamic and Dynamic Optimization of a Solar Assisted Adsorption Air Conditioning Unit, Proc. 2nd Int. Conf. on Solar Air Conditioning, Tarragona, 2007, pp. 238–240.

  60. Rudenko, M.F., Sun-Using Refrigeration Units, Kholodilnaya Tekhnika, 1999, no. 2, p. 6.

  61. Rudenko, M.F. and Ilyin, A.K. Investigation of the Operation of a Solar Dry Adsorption Refrigeration Units, Therm. Eng., 2003, vol. 50, no. 10, p. 126.

    Google Scholar 

  62. Chalayev, D.M. and Aristov, Yu.I., Evaluation of the Work of Low Temperature Adsorption Refrigerator: Influence of the Water Adsorbent Properties, Teploenergetika, 2006, no. 3, pp. 73–77.

  63. Gordeyeva, L., Freni, A., Restuccia, G., and Aristov, Yu., Methanol Sorbents “Salt Inside Mesoporous Silica”: The Screening of Salts for Adsorptive Air Conditioning Driven by Low Temperature Heat, Ind. Eng. Chem. Res., 2007, vol. 46, pp. 2747–2752.

    Article  Google Scholar 

  64. Okunev, B.N., Neifets, L.I., and Aristov, Yu.I., A New Methodology of Studying the Dynamics of Water Sorption/Desorption under Real Operating Conditions of Adsorption Heat Pumps: Modeling of Coupled Heat and Mass Transfer, Int. J. Heat Mass Transfer, 2007 (in press).

  65. Polanyi, M., Theories of the Adsorption of Gas, Trans. Faraday Soc., 1932, vol. 28, p. 316.

    Article  Google Scholar 

  66. Dubinin, M.M., Progress in Surface and Membrane Science, New York: Academic, 1975.

    Google Scholar 

  67. Jaroniec, M., Fifty Years of the Theory of Volume Filling of Micropores, Carbon, 1989, vol. 27, no. 1, pp. 77–83.

    Article  Google Scholar 

  68. Haseler, L.E., Absorption Cycle Heat Pumps for Domestic Heating, Report AERE-G 104R, Harwell, 1978.

  69. Critoph, R.E., Performance Limitation of Adsorption Cycles for Solar Cooling, Solar Energy, 1988, vol. 41, no. 1, pp. 21–31.

    Article  Google Scholar 

  70. Duffie, J.A. and Beckman, W.E., Solar Engineering of Thermal Processes, New York: Wiley, 1991.

    Google Scholar 

  71. Kato, Yu., Ando, K., and Yoshizawa, Y., Study on a Regenerative Fuel Reformer for a Zero-Emission Vehicle System, J. Chem. Eng., 2003, vol. 36, pp. 860–866.

    Article  Google Scholar 

  72. Brunauer, S., Deming, L.S., Deming, W.S. and Teller, E., Types of Adsorption Isotherms, J. Am. Chem. Soc., 1940, vol. 62, p. 1723.

    Article  Google Scholar 

  73. Gregg, S.J. and K. S. W. Sing, K. S. W. Adsorption, Surface Area and Porosity, London: Academic, 1982.

    Google Scholar 

  74. Touzan, Ph., Thermodynamic Values of Ammonia-Salts Reactions for Chemical Sorption Heat Pumps, Int. Sorption Heat Pump Conf., 1999, pp. 225–238.

  75. Offenhartz, P. O’D, Brown, F.C., Mar, R.W., and Carling, R.W., Engineering Prototype Studies on the Calcium Chloride-Methanol Chemical Heat Pump for Solar Air Conditioning, Heating, and Storage, J. Sol. Energy Eng., Trans. ASME, 1980, vol. 102, pp. 59–65.

    Google Scholar 

  76. Mar, R.W. and Carling, R.W. The Calcium Chloride-Ethanol System, Thermochem. Acta, 1981, vol. 45, pp. 213–217.

    Article  Google Scholar 

  77. Fujoka, K., Oido, K., and Hirata, Yu., Investigation on the Structure of Calcium Chloride Reactor Beds for Chemical Heat Pumps, Proc. 3rd Int. Conf. on Heat Powered Cycles, Cyprus, 2004, paper no. 2217.

  78. Simonova, I.A. and Aristov, Yu.I., Sorption Properties of Calcium Nitrate Dispersed in Silica Gel: Effect of Pore Size, Zh. Fiz. Khim., 2005, vol. 79, no. 8, pp. 1477–1481.

    Google Scholar 

  79. Trudel, J., Hosatte, S., and Ternan, M., Solid-Gas Equilibrium in Chemical Heat Pumps: the NH3-CoCl2 System, Appl. Thermal Eng., 1999, vol. 19, pp. 495–511.

    Article  Google Scholar 

  80. Lyakhov, N.Z. and Bldirev, V.V. Dehydration of Crystalline Hydrates, Rus. Adv. Chem., 1972, vol. 41, pp. 1960–1996.

    Google Scholar 

  81. Delmon, B., Introduction a la Ginetique Heterogene, Paris: Technip, 1969.

    Google Scholar 

  82. Spinner, B., Ammonia-Based Thermochemical Transformers, Heat Recovery Systems and CHP, 1993, vol. 13, no. 4, pp. 301–307.

    Article  Google Scholar 

  83. Mauran, S., Lebrun, M., Prades, P., Moreau, M., Spinner, B., and Drapier, C., Active Component and Its Use As Reaction Media, US Patent 5 283 219 (February 1, 1994).

  84. Vasiliev, L.L., Kanonchik, L.E., Molodkin, F.F., and Rabetsky, M.I., Adsorption Heat Pump Using Carbon Fiber/NH3 and Heat Pipes, Proc. 5th IEA Heat Pump Conf. Toronto, 1996, pp. 35–43.

  85. Vasiliev, L.L., Mishkinis, D.A., Antukh, A.A., and Vasiliev, L.L., Jr., A Solar and Electrical Solid Sorption Refrigerator, Int. J. Thermal Sci., 1999, vol. 38, pp. 220–227.

    Article  Google Scholar 

  86. Vasiliev, L.L., Mishkinis, D.A., Antukh, A.A., Kulakov, A.G., and Vasiliev, L.L., Jr., Resorption Heat Pumps, Appl. Thermal Eng., 2004, vol. 24, pp. 1893–1903.

    Article  Google Scholar 

  87. Aidom, Z. and Ternan, M., Salt Impregnated Carbon Fibers As the Reactive Medium in a Chemical Heat Pump: The NH3/CoCl2 System, Appl. Thermal Eng., 2002, vol. 22, pp. 1163–1173.

    Article  Google Scholar 

  88. Fujioka, K., Hatanaka, K., and Hirate, Yu., Composite Reactants of Calcium Chloride Combined with Functional Carbon Materials for Chemical Heat Pumps, 4th Int. Seminar on Heat Pipes, Heat Pumps, and Refrigerators, Minsk, 2005, pp. 306–315.

  89. Wang, K., Wu, J.Y., Wang, R.Z., and Wang, L.W., Composite Adsorbent of CaCl2 and Expended Graphite for Absorption Ice Makers on Fishing Boats, Int. J. Refrig., 2006, vol. 29, pp. 199–210.

    Article  Google Scholar 

  90. Sharonov, V.E., Veselovskaya, J.V., and Aristov, Yu.I., Ammonia Sorption on Composites “CaCl2 in Inorganic Heat Matrix”: Isosteric Chart and Its Performance, Int. J. Low Carbon Techn., 2006, vol. 1, no. 3, pp. 191–200.

    Article  Google Scholar 

  91. Zhong, Y., Critoph, R.E., Thorpe, R.N., Tamainot-Telto, Z., and Aristov, Yu.I., Isothermal Sorption Characteristics of the BaCl2-NH3 Pair in a Vermiculite Host Matrix, Appl. Thermal Eng., 2007, vol. 27, nos. 14–15, pp. 2455–2462.

    Article  Google Scholar 

  92. Levitskii, E.A., Aristov, Yu.I., Tokarev, M.M., and Parmon, V.N., “Chemical Heat Accumulators”—A New Approach to Accumulating Low Potential Heat, Sol. Energy Mater. Sol. Cells., 1996, vol. 44, no 3. pp. 219–235.

    Article  Google Scholar 

  93. Aristov, Yu.I., Tokarev, M.M., Parmon, V.N., Restuccia, G., Burger, H.-D., Mittelback, W., and Henning H.-M., New Working Materials for Sorption Cooling/Heating Driven by Low Temperature Heat: Properties, Int. Sorption Heat Pump Conf. Munich, 1999, pp. 247–254.

  94. Aristov, Yu.I., Thermochemical Storage of Energy: New Methods and Materials, Doctoral Dissertation (Chem.), Novosibirsk, 2003.

  95. Tokarev, M.M., Composite Sorbents “Calcium Chloride in Porous Matrix”, Cand. Sci. Dissertation (Chem.), Novosibirsk, 2003.

  96. Gordeyeva, L.G., New Materials for Thermochemical Storage of Energy, Cand. Sci. Dissertation (Chem.), Novosibirsk, 2000.

  97. Aristov, Yu.I. New Family of Materials for Adsorption Cooling: Material Science Approach, J. Eng. Thermophys., 2007, vol. 16, no. 2, pp. 63–72.

    Article  Google Scholar 

  98. Gordeyeva, L.G., Glasznev, I.S., Malakhov, V.V., and Aristov, Yu.I., The Effect of Calcium Chloride Interaction with the Silica Gel Surface on the Phase Composition and Sorption Properties of the Disperse Salt, Zh. Fiz. Khim., 2003, vol. 77, no. 11, pp. 2019–2023.

    Google Scholar 

  99. Gordeyeva, L.G., Glasznev, I.S., and Aristov, Yu.I., Sorption of Water by Sodium, Copper, and Magnesium Sulfates Dispersed in Mesopores of Silica Gel and Alumina, Zh. Fiz. Khim., 2003, vol. 77, no. 10, pp. 1930–1935.

    Google Scholar 

  100. Gordeyeva, L.G., Gubar, A.V., Plyasova, L.M., Malakhov, V.V., and Aristov, Yu.I., Composite Sorbents of Water “Salt in Silica Gel Pores”: Effect of Interaction of Salt with Surface on the Chemical, Phase Composition and Sorption Properties, Kinet. Katal., 2005, vol. 46, no. 5, pp. 780–786.

    Google Scholar 

  101. Gordeyeva, L.G., Savchenko, E.V., Glaznev, I.S., Malakhov, V.V., and Aristov, Yu.I., Impact of Phase Composition on Water Adsorption on Inorganic Hybrides: Salt/Silica,” J. Coll. Interface Sci., 2006, vol. 301, pp. 685–691.

    Article  Google Scholar 

  102. Restuccia, G., Freni, A., Vasta, S., and Aristov, Yu.I., Selective Water Sorbents for Solid Sorption Chiller: Experimental Results and Modelling, Int. J. Refrig., 2004, vol. 27, no. 3, pp. 284–293.

    Article  Google Scholar 

  103. Restuccia, G., Freni, A., Vasta, S. Tokarev, M.M., and Aristov, Yu.I., Environmentally Clean Adsorption Refrigerator Based on the Composite “CaCl2 in Silica Gel”: Laboratory Prototype, Khim. Interes. Ust. Razv., 2004, vol. 12, pp. 211–216.

    Google Scholar 

  104. Restuccia, G., Freni, A., Vasta, S., Tokarev, M.M., and Aristov, Yu.I., Adsorption Refrigeration Engine Based on the Working Pair “Calcium Chloride in Silica Gel-Water”, Kholodilnaya Tekhnika, 2005, no. 1, pp. 2–6.

  105. Gordeyeva, L., Freni, A., Restuccia, G., and Aristov, Yu., A New Family of Methanol Sorbents for Adsorptive Air Conditioning Driven by Low Temperature Heat, Proc. Int. Conf. on Heat Powered Cycles, Newcastle, 2006, pp. 21–22.

  106. Aristov, Yu.I. and Vasiliev, L.L., New Composite Sorbents of Water and Ammonia for Chemical and Adsorption Heat Pumps (Review), Inzh.-Fiz. Zh., 2006, vol. 79, no. 6, pp. 160–175.

    Google Scholar 

  107. Aristov, Yu.I., Glaznev, I.S., Freni, A., and Restuccia, G., Kinetics of Water Sorption on SWS-1L (Calcium Chloride Confined to Mesoporous Silica Gel): Influence of Grain Size and Temperature, Chem. Eng. Sci., 2006, vol. 61, no. 5, pp. 1453–1458.

    Article  Google Scholar 

  108. Aristov, Yu.I., Glaznev, I.S., Gordeyeva, L.G., Koptyug, I.V., Ilyina, L.Yu., Kärger, J., Krause, C., and Dawoud, B. Dynamics of Water Sorption on Composites “CaCl2 in Silica”: Single Grain, Granulated Bed, Consolidated Layer, Fluid Transport in Nanoporous Materials, Series II: Mathematics, Physics and Chemistry, Amsterdam: Springer, 2006, pp. 553–565.

    Chapter  Google Scholar 

  109. Vasiliev, L.L., Kanonchik, L.E., Kulakov, A.G., Mishinis, D.A., Safonova, A.M., and Luneva, N.K., Activated Carbon Fiber Composites for Ammonia, Methane and Hydrogen Adsorption, Int. J. Low Carbon Technol., 2006, vol. 1, no. 2, pp. 95–111.

    Google Scholar 

  110. Aristov, Yu.I., Glaznev, I.S., Freni, A., and Restuccia, G., Kinetics of Sorption of Water by Composite Sorbent “CaCl2 in Pores of KSK”: Effect of Pore Size and Temperature, Kinet. Katal., 2006, vol. 47, no. 5, pp. 793–798.

    Google Scholar 

  111. Aristov, Yu.I., Koptyug, I.V., Gordeyeva, L.G., Ilyina, L.Yu., and Glaznev, I.S., Dynamics of Sorption of Water Vapors in the Sorbent Layer “CaCl2 in Silica Gel”: Effect of Layer Porous Structure, Kinet. Katal., 2006, vol. 47, no. 5, pp. 799–804.

    Google Scholar 

  112. Antukh, A.A., Vasiliev, L.L., and Filatova, O.S., Heat Pump for Systems of Trigeneration of Energy (Electricity, Heat, and Refrigeration), Energoeffektivnost, 2004, no. 5, pp. 17–18.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristov, Y.I., Vasilyev, L.L. & Nakoryakov, V.E. Status quo and prospects of development of chemical and sorption heat engines in the Russian federation and the Republic of Belarus. J. Engin. Thermophys. 17, 166–190 (2008). https://doi.org/10.1134/S181023280803003X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023280803003X

Keywords

Navigation