Skip to main content

On the modeling of an airlift photobioreactor

Abstract

A mathematical formulation of a model of an airlift photobioreactor in the cases of interphase mass transfer between gas and liquid in the riser and photobioreaction in the downcomer is presented. The equations allow the calculation of the vertical distribution of the average concentrations of an active gas component (CO2, O2) and a photoactive material (cells), using average velocities and effective diffusivities in the riser and the downcomer. A hierarchical approach for the model parameter identification on the basis of experimental data is proposed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lee, J.K. and Low, G.S., Productivity of out Doors Algae Cultures in Enclosed Tubular Photobioreactor, Biotechnol. Bioeng., 1992, vol. 40, pp. 1119–1122.

    Article  Google Scholar 

  2. 2.

    Frohlich, B.T., Webster, I.A., Ataai, M.M., and Shuler, M.L., Photobioreactors: Models for Interaction of Light Intensity, Reactor Design and Algae Physiology, Biotechnol. Bioeng. Symp., 1983, vol. 13, pp. 331–350.

    Google Scholar 

  3. 3.

    Ogbonna, J.C., Yada, H., Masu, H., and Tanaka, H., A Novel Internally Illuminated Stirred Tank Photobioreactor for Large Scale Cultivation of Photosynthetic Cells, J. Fermentat. Bioengug, 1966, vol. 82, pp. 61–67.

    Article  Google Scholar 

  4. 4.

    Prokop, A. and Erickson, L.E., Photobioreactors, in Boireactor System Design, Asenjo, J.A. and Merchuk, J.C., Eds., New York: Marcel Decker, 1994.

    Google Scholar 

  5. 5.

    Merchuk, J.C., Ladwa, J.C., and Bulmer, M., Improving the Airlift Reactor: the Helical Flow Promoter, in Bioprocesses and Bioreactor Fluid Dynamics, Ninehow, A., BHRA: Elsevier, 1993, pp. 61–68.

    Google Scholar 

  6. 6.

    Merchuk, J.C. and Gluz, M., Airlift Reactors, in Encyclopedia of Bioprocess Technology, Flickinger, M.C. and Drew, S.W., Eds., New York: John Wiley & Sons, 1999, pp. 320–353.

    Google Scholar 

  7. 7.

    Schlotelburg, C., Gluz, M., Popovic, M., and Merchuk, J.C., Characterization of an Airlift Reactor with Helical Flow Promoters, Can. J. Chem. Eng., 1999, vol. 77, pp. 804–810.

    Article  Google Scholar 

  8. 8.

    Mc Mullen, A.K., Miyauchi, T., and Vermenlen, T., UCRI-3911, U.S. At. Energy Comm., 1958.

  9. 9.

    Miyauchi, T. and Vermenlen, T., Jnd. Eng. Chem. (Fund.), 1963, vol. 2, p. 113.

    Article  Google Scholar 

  10. 10.

    Sleicher, C.A., Jr., AIChEJ, 1959, vol. 5, p. 145.

    Article  Google Scholar 

  11. 11.

    Boyadzhiev, L. and Boyadjiev, Chr., Etude de la Dispersion Longitudinale Dansles Colonness d’Extraction Liquid-Liquid, Chem. Eng. J., 1973, vol. 6, pp. 107–110.

    Article  Google Scholar 

  12. 12.

    Boyadjiev, Chr., Diffusion Models and Scale-up, Int. J. Heat and Mass Transfer (in press).

  13. 13.

    Aibo, S., Growth Kinetics of Photosynthetic Microorganisms. Microbial Reactions, Adv. Biochemistry and Biochem. Eng., 1982, vol. 23, pp. 85–156.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chr. Boyadjiev.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boyadjiev, C., Merchuk, J. On the modeling of an airlift photobioreactor. J. Engin. Thermophys. 17, 134 (2008). https://doi.org/10.1134/S1810232808020069

Download citation

Keywords

  • Riser
  • Photobioreactors
  • Engineer THERMOPHYSICS
  • Airlift Reactor
  • Engineering THERMOPHYSICS