Skip to main content
Log in

The phenomenology of metastable liquids and the glass transition

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

A survey is given on classical and new phenomenological approaches for describing the thermodynamics of undercooled metastable liquids and for glass transition and on the nature of glasses. It begins with Simon’s (1926/1930) and Prigogine’s (1954) concepts on the thermodynamics of vitrification. A generalized approach in the phenomenology of glass-transition is developed based on a quasi-linear extension of the formalism of the thermodynamics of irreversible processes. This approach is a generalization of ideas for the description of the kinetics of glass transition as developed initially by Vol’kenstein and Ptizyn (1956), Moynihan (1974), and Gutzow et al. (2000). It allows us to determine, as a second particular application, the temperature course of the thermodynamic functions upon vitrification (Gutzow et al. (2000)). In performing this task, both entropy freezing-in and entropy production are accounted for (Möller, Schmelzer, Gutzow (2006)), thus, essentially correcting Simon’s classical approximation, which has been in use for many years. In addition, the approach developed allows a new interpretation of the value of the Prigogine-Defay ratio (Schmelzer, Gutzow (2006)) employing in the description of vitrification only one appropriately chosen internal structural order parameter: ξ. In this way, a new picture of the thermodynamics of undercooled liquids, the glass transition, and glass stabilization is formulated.

Based on the theoretical approach developed, the applicability of the third law of thermodynamics to nonequilibrium systems, in general, and to glasses, in particular, is reconsidered. It is shown that a formulation of the third principle of thermodynamics can be given—as the principle of nonaccessibility of the absolute zero temperature—comprising both equilibrium and nonequilibrium systems. Experimental results are summarized confirming the predictions of the theoretical concepts outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skripov, V.P., Metastable Liquids, New York: WILEY, 1974.

    Google Scholar 

  2. Skripov, V.P. and Koverda, V.P., Spontaneous Crystallization of Undercooled Liquids, Moscow: Nauka, 1984 [in Russian].

    Google Scholar 

  3. Skripov, V.P. and Faizullin, M.Z., Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity, Berlin-Weinheim: WILEY-VCH, 2006.

    Google Scholar 

  4. Simon, F., Zur Bestimmung der freien Energie, in Handbuch der Physik, Geiger, H. and Scheel, H., Eds., Berlin: Springer Verlag, 1926, vol. 10, pp. 350–352.

    Google Scholar 

  5. Simon, F., Über den Zustand der unterkühlten Flüssigkeiten und Gläser, Z. anorg. allg. Chemie, 1931, vol. 203, pp. 219–227.

    Article  Google Scholar 

  6. Simon, F., The Third Law of Thermodynamics: A Historical Survey, The 40-th Guthrie Lecture, Yearbook Phys. Society, London, 1956, vol. 1, pp. 1–40.

    Google Scholar 

  7. Prigogine, I. and Defay, R., Chemical Thermodynamics, Longmans and Green, London, 1954.

  8. Davies, R.O. and Jones, G.O., Thermodynamic and Kinetic Properties of Glasses, Adv. Phys., 1953, vol. 2, pp. 370–410.

    Article  ADS  Google Scholar 

  9. Gutzow, I. and Schmelzer, J., The Vitreous State: Thermodynamics, Structure, Rheology and Crystallization, Berlin, New York: Springer-Verlag, 1995.

    Google Scholar 

  10. Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, London: CRS-Press, 1994.

    Google Scholar 

  11. Simon, F., The Third Principle of Thermodynamics, Physica, 1937, vol. 4, pp. 1089–1105.

    Article  Google Scholar 

  12. Gutzow, I., Über den Dampfdruck und die Löslichkeit unterkühlter Schmelzen, Zs. Phys. Chemie (Neue Folge), 1972, vol. 81, 195–212.

    Google Scholar 

  13. Grantcharova, E. and Gutzow, I., Vapour Pressure, Solubility, and Affinity of Under-cooled Melts and Glasses, J. Non-Cryst. Solids, 1986, vol. 81, pp. 99–127.

    Article  Google Scholar 

  14. Grantcharova, E., Avramov, I., and Gutzow, I., Die thermodynamischen Parameter und die Löslichkeitskurven von glasartigen Substanzen, Naturwissenschaften, 1986, vol. 73, pp. 95, 96.

    Article  ADS  Google Scholar 

  15. Bragg, W.L. and Williams, E.J., The Effect of Thermal Agitation on Atomic Arrangement in Alloys, Proc. Roy. Society (London), 1934, vol. A 145, pp. 699–730.

    Article  ADS  Google Scholar 

  16. Vol’kenstein, M.V. and Ptizyn, O.B., Relaxation Theory of Vitrification: Solution of the Basic Equation and Its Investigation, J. Techn. Phys. USSR (JTF), 1956, vol. 26, pp. 2204–2214 [in Russian].

    Google Scholar 

  17. Moynihan, C.T., Eastel, A.J., Wilder, J., and Tucker, J., Dependence of the Glass Transition Temperature on Heating and Cooling Rates, J. Phys. Chem., 1974, vol. 78, pp. 2673–2677.

    Article  Google Scholar 

  18. Gutzow, I., Ilieva, D., Babalievski, F., and Yamakov, V., Thermodynamics and Kinetics of the Glass Transition: A Generic Geometric Approach, J. Chem. Phys., 2000, vol. 112, 10 941–10 948.

    Article  Google Scholar 

  19. Gutzow, I., Yamakov, V., Ilieva, D., Babalievski, F., and Pye, D., Generic Phenomenological Theory of Vitrification, Glass Physics and Chemistry, 2001, vol. 27, pp. 228–245.

    Article  Google Scholar 

  20. Haase, R., Thermodynamik der irreversiblen Prozesse, Darmstadt: D. Steinkopff Verlag, 1953.

    Google Scholar 

  21. Bazarov, I.P., Thermodynamics, New York: McMillan and Co., 1964.

    Google Scholar 

  22. de Donder, Th. and van Rysselberghe, P., Thermodynamic Theory of Affinity: A Book of Principles, Stanford: Stanford Univ. Press, 1936.

    Google Scholar 

  23. Callen, H.B., Thermodynamics: An Introduction to Equilibrium Thermodynamics and Irreversible Thermodynamics, New York: Wiley, 1964.

    Google Scholar 

  24. Gutzow, I., Grigorova, Ts., Avramov, I., and Schmelzer, J.W.P., Generic Phenomenology of Vitrification and Relaxation and the Kohlrausch and Maxwell Equations, Phys. Chem. Glasses, 2002, vol. 43C, pp. 476–486.

    Google Scholar 

  25. Gutzow, I., Grigorova, Ts., and Schmelzer, J.W.P., Irreversible Thermodynamics, Reaction Kinetics, and Relaxation, Proc. of the Workshops Nucleation Theory and Applications, 2002, Schmelzer, J.W.P., Röpke, G., and Priezzhev, V.B., Eds., Joint Institute for Nuclear Research Publishing Department, Dubna, Russia, 2002, pp. 424–468.

    Google Scholar 

  26. Morey, G.W., The Properties of Glass, New York: Reinhold Publ., 1954.

    Google Scholar 

  27. Avramov, I. and Gutzow, I., Relaxation Kinetics of Glasses and of Glass-forming Melts, J. Non-Cryst. Solids, 2002, vol. 298, pp. 67–75.

    Article  Google Scholar 

  28. Möller, J., Gutzow, I., and Schmelzer, J.W.P., Freezingin and Production of Entropy in Vitrification, J. Chem. Phys., 2006, vol. 125, 094505/1–13.

    Article  Google Scholar 

  29. Petroff, B., Milchev, A., and Gutzow, I., Thermodynamic Functions of Simple (Monomeric) and of Polymeric Melts: MFA-approach and Monte-Carlo Simulation, J. Macromolec. Sci.—Physics, 1996, vol. B35, pp. 763–794.

    Article  Google Scholar 

  30. Gutzow, I. and Dobreva, A., Structure, Thermodynamic Properties and Cooling Rate of Glasses, J. Non-Cryst. Solids, 1991, vol. 129, pp. 266–279.

    Article  Google Scholar 

  31. Gupta, P.K. and Moynihan, C.T., Prigogine-Defay Ratio for Systems with More Than One Order Parameters, 1976, J. Chem. Phys., vol. 65, pp. 4136–4140.

    Article  ADS  Google Scholar 

  32. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Springfield: C. C. Thomas Publ., 1955.

    Google Scholar 

  33. Thomas, S.R. and Parks, G.S., Studies on Glass: VI. Some Specific Heat Data on Boron Trioxide, J. Chem. Phys., 1931, vol. 35, pp. 2091–2102.

    Article  Google Scholar 

  34. Winter, A., Evolution de la viscosite du verre in fonction de la temperature, Verres et Refract, 1953, vol. 7, pp. 217–224.

    Google Scholar 

  35. Schnaus, U.E., Moynihan, C.T., Gammon, R.W., and Macedo, P.B., The Relation of the Glass Transition Temperature to Vibrational Characteristics in Network Glasses, Phys. Chem. Glasses, 1970, vol. 11, pp. 213–218.

    Google Scholar 

  36. Kinoshita, A., Characterization of Glass Transition in a As2Se3-Glass by Heat of Vaporization, J. Non-Cryst. Solids, 1980, vol. 42, pp. 447–454.

    Article  Google Scholar 

  37. Planck, M., Vorlesungen über Thermodynamik, VIII. Berlin: Auflage, de Gruyter Verlag, 1927, pp. 269–281.

    Google Scholar 

  38. Nernst, W., Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes, Halle: W. Knapp Verl., 1918.

    MATH  Google Scholar 

  39. Wilks, J., Der dritte Hauptsatz der Thermodynamik, Fachbuchverlag Leipzig, 1965, pp. 40–49, 61, 137–140.

  40. Landau, L.D. and Lifshitz, E.M., Statistical Physics, New York: Pergamon, 1980.

    Google Scholar 

  41. Tarassov, V.V., New Problems in the Physics of Glass, Moscow: Gosstroizdat, 1956 [in Russian].

    Google Scholar 

  42. Zeller, R.C. and Pohl, R.O., Thermal Conductivity and Specific Heats of Non-Crystalline Solids, Phys. Rev. B4, 1971, 2029–2041.

    ADS  Google Scholar 

  43. Pohl, R.O., in Topics in Current Physics, No. 24: Amorphous Solids. Low Temperature Properties, Berlin, New York: Springer Verlag, 1981, p. 27.

    Google Scholar 

  44. Binder, K. and Kob, W., Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics, London, Singapore: World Scientific, 2006.

    Google Scholar 

  45. Data by Huncklinger, S., Sussnek, S., and Daunsfield, T., cited according to Feltz A., Amorphe und glasartige anorganische Festkörper, Berlin: Akademie-Verlag, 1983, p. 65.

    Google Scholar 

  46. Krause, J.T. and Kurkjian, C.R., Coefficients of Thermal Expansion of Glasses, J. Amer. Ceram. Soc., 1968, vol. 51, pp. 226–229.

    Article  Google Scholar 

  47. Novikova, S.I., Thermal Expansion of Solids, Moscow: Nauka, 1974 [in Russian].

    Google Scholar 

  48. Zemanski, M.V., Heat and Thermodynamics, London: Mc Graw Hill Book Company, 1968.

    Google Scholar 

  49. Gutzow, I., On the Electrochemical Behavior of Undercooled Melts and Glasses, J. Non-Cryst. Solids, 1981, vol. 45, pp. 301–324.

    Article  Google Scholar 

  50. Sommerfeld, A., Thermodynamik und Statistik, Wiesbaden: Dieterich, 1952.

    MATH  Google Scholar 

  51. Gutzow, I. and Todorova, S., Glasses as Materials with Increased Constant Disorder as Sources of Accumulated Energy and High Chemical Reactivity, Bulg. Chemistry and Industry, 2005, vol. 76, pp. 63–69.

    Google Scholar 

  52. Basak, S., Nagel, R., and Giessen, B.C., Thermoelectric Power of Magnetic and Non-Magnetic Amorphous Metals, Phys. Rev. B, 1980, vol. 21, pp. 4049–4054.

    Article  ADS  Google Scholar 

  53. Baibich, N.N., Muir, W.B., Altounian, Z., and Guo-Hua, T., Thermopower and Resistivity in Amorphous Mg1−x Znx-Alloys, Phys. Rev. B, 1982, vol. 26, pp. 2963–2966.

    Article  ADS  Google Scholar 

  54. Schmelzer, J.W.P. and Gutzow, I., The Prigogine-Defay Ratio Revisited, J. Chem. Phys., 2006, vol. 125, 184511/1–11.

    Article  ADS  Google Scholar 

  55. Milchev, A. and Gutzow, I., Temperature Dependence of the Configurational Entropy of Undercooled Melts and the Nature of the Glass Transition, J. Macromol. Sci. Phys. B, 1982, vol. 21, pp. 583–615.

    Google Scholar 

  56. Landa, L., Landa, Ks., and Thomsen, Sc., Uncommon Description of Common Glasses, Vol. 1: Fundamentals of the Unified Theory of Glass Formation and Glass Transition, St. Petersburg: Yanus, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gutzow.

Additional information

Dedicated to the memory of Vladimir P. Skripov.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzow, I., Schmelzer, J.W.P. & Petroff, B. The phenomenology of metastable liquids and the glass transition. J. Engin. Thermophys. 16, 205–223 (2007). https://doi.org/10.1134/S1810232807040017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232807040017

Keywords

Navigation