Skip to main content

Statistics of low-frequency pulsations in critical regimes of heat mass exchange with phase transitions

Abstract

Experimental investigation of fluctuation dynamics in critical and transitional modes of heat mass exchange shows existence of irregular high-energy pulsations with power spectrum inversely proportional to the frequency—so called 1/f spectrum. Such regimes are characterized by the fact that an essential part of the pulsations energy is connected with very slow processes and mean that large high-energy bursts are possible in the system. Another characteristic feature of such regimes is scale invariance of the fluctuations distribution function. According to the theory, the 1/f fluctuations can emerge in physical systems due to simultaneous phase transitions in presence of sufficiently intensive white noise.

This paper is devoted to detailed investigation of relaxation processes at steadying of stationary stochastic process in non-equilibrium phase transitions in system of two nonlinear stochastic differential equation. Such an information reveals statistical patterns of particular large-scale low-frequency bursts. Discontinuous “forgetting” of the initial conditions takes place. It is shown by numerical methods that distributions of duration and maximal values of the low-frequency extreme bursts have the power-like form.

Experimental investigation results of statistical characteristics of fluctuation processes at ultrasonic cavitation and flash boiling of overheated water jets are presented. Results of the experiments carried out fit conclusions of the theoretical model for interacting heterogeneous phase transitions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kolmogorov, A.N., Lokalnaya struktura turbulentnosti v neszhimaemoy vyazkoy zhidkosti pri ochen bolshikh chislakh Reynoldsa (Local Structure of Turbulence in Incompressible Viscid Fluid at Very Large Reynolds Numbers), Dokl. Akad. Nauk SSSR, 1941, vol. 30, pp. 299–303.

    ADS  Google Scholar 

  2. 2.

    Kogan, Sh.M., Nizkochastotnyi tokovyi shum so spectrom tipa 1/f v tverdykh telakh (Low-Frequency Current Noise with Spectrum of 1/F Type in Solids), Usp. Fiz. Nauk, 1985, vol. 145, pp. 285–328.

    Google Scholar 

  3. 3.

    Jensen, H.J., Self-Organized Criticality, New York: Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  4. 4.

    Matizen, E.V., Ishikaev, S.M., and Oboznov, V.A., Magnitnyi moment kvadratnykh dzhozefsonovskikh setok. Samoorganizovannaya kritichnost (Magnetic Moment of Square Josephson Grids. Self-Organized Criticality), Zh. Exp. Teor. Fiz., 2004, vol. 126, pp. 1221–1231.

    Google Scholar 

  5. 5.

    Klimontovich, Yu.L., Statisticheskaya teoriya otkrytykh sistem (Statistical Theory of Open Systems), Moscow: TOO Yanus, 1995.

    Google Scholar 

  6. 6.

    Bak, P., Tang, C., and Wiesenfeld, K., Self-Organized Criticality, Phys. Rev., Ser. A, 1988, vol. 38, pp. 364–374.

    Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    Jensen, H.J., Christinsen, K., and Fogedby, H.C., 1/F Noise, Distribution of Lifetimes, and a Pile of Sand, Phys. Rev., Ser. B, 1989, vol. 40, pp. 7425–7427.

    Article  ADS  Google Scholar 

  8. 8.

    Koverda, V.P., Skokov, V.N., and Skripov, V.P., 1/f-shum pri neravnovesnom fazovom perekhode. Eksperiment i matematicheskaya model (1/F Noise at Non-Equilibrium Phase Transition. Experiment and Mathematical Model), Zh. Exp. Teor. Fiz., 1998, vol. 113, pp. 1748–1757.

    Google Scholar 

  9. 9.

    Koverda, V.P. and Skokov, V.N., Masshtabnye preobrazovaniya 1/f fluktuatsii pri neravnovesnykh fazovykh perekhodakh (Scale Transformations of 1/F Fluctuations at Non-Equilibrium Phase Transitions), Zh. Tekh. Fiz., 2004, vol. 74, pp. 4–8.

    Google Scholar 

  10. 10.

    Koverda, V.P. and Skokov, V.N., Indutsirovannyi shumom perekhod i 1/f fluktuatsii pri peresechenii neravnovesnykh fazovykh perekhodov (Transition Induced by Noise and 1/f Fluctuations at Meeting of Non-Equilibrium Phase Transitions), Dokl. Akad. Nauk, 2002, vol. 386, pp. 187–189.

    Google Scholar 

  11. 11.

    Carbone, V., Cavazzana, R., Antoni, V., et. al., To What Extent Can Dynamical Models Describe Statistical Features of Turbulent Flows?, Europhysics Lett., 2002, vol. 58, pp. 349–355.

    Article  ADS  Google Scholar 

  12. 12.

    Skokov, V.N., Koverda, A.V., Reshetnikov, A.V., et al., 1/f Noise and Self-Organized Criticality in Crisis Regimes of Heat and Mass Transfer, Int. J. Heat and Mass Transfer, 2003, vol. 46, pp. 1879–1883.

    Article  Google Scholar 

  13. 13.

    Olemskoi, A.I., Teoriya stokhasticheskikh sistem s singulyarnym multiplikativnym shumom (Theory of Stochastic Systems with Singular Multiplicative Noise), Usp. Fiz. Nauk, 1998, vol. 168, pp. 287–321.

    Article  Google Scholar 

  14. 14.

    Koverda, V.P., Skokov, V.N., Reshetnikov, A.V., and Vinogradov, A.V., Pulsatsii s 1/f spektrom moshchnosti pri akusticheskoi kavitatsii vody (Pulsations with 1/f Power Spectrum at Acoustic Cavitation of Water), Teplofiz. Vys. Temp., 2005, vol. 43, pp. 631–636.

    Google Scholar 

  15. 15.

    Lauterborn, W., Schmitz, E., and Judt, A., Experimental Approach to a Complex Acoustic System, Int. J. Bifurcation Chaos, 1993, vol. 3, pp. 635–642.

    MATH  Article  Google Scholar 

  16. 16.

    Moussatov, A., Granger, C., and Dubis, B., Cone-like Bubble Formation in Ultrasonic Cavitation Field, Ultrasonics Sonochemistry, 2003, vol. 10, pp. 191–195.

    Article  Google Scholar 

  17. 17.

    Skokov, V.N., Koverda, V.P., Reshetnikov, A.V., and Vinogradov A.V., 1/F Fluctuations Under Acoustic Cavitation of Liquids, Physica, Ser. A, 2006, vol. 364, pp. 63–69.

    Article  ADS  Google Scholar 

  18. 18.

    Skripov, V.P., Metastabilnaya zhidkost (Metastable Fluid), Moscow: Nauka, 1972.

    Google Scholar 

  19. 19.

    Reshetnikov, A.V., Mazheiko, N.A., and Skripov, V.P., Strui vskipayuschikh zhidkostey (Jets of Coming to Boil Fluids), Prikl. Math. Tekh. Phys., 2000, vol. 41, pp. 125–132.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. P. Koverda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koverda, V.P., Skokov, V.N. & Reshetnikov, A.V. Statistics of low-frequency pulsations in critical regimes of heat mass exchange with phase transitions. J. Engin. Thermophys. 16, 130–138 (2007). https://doi.org/10.1134/S1810232807030046

Download citation

Keywords

  • Power Spectrum
  • Cavitation
  • Random Process
  • Engineer THERMOPHYSICS
  • Stationary Random Process