Skip to main content

Attainable superheating of solutions of cryogenic liquids

Abstract

The kinetics of spontaneous boiling-up of superheated binary solutions of cryogenic liquids is studied. Within the framework of the Kramers-Zeldovich method, an expression is obtained for the steady state rate of homogeneous nucleation in a solution that takes into account free-molecular and diffusion regimes of the substance supply to a growing bubble. Viscous and inertial forces are also taken into account in the study of the nucleus growth dynamics. The work of critical nucleus formation is determined within the framework of the Gibbs and van der Waals capillarity theories. The dependence of the surface tension of critical bubbles in the solution on their size is investigated.

The temperature of attainable superheating and nucleation rates in superheated solutions of cryogenic liquids with complete or partial solubility of the components are determined by a method of lifetime measurement. The experiments were conducted in a wide range of pressures and solution concentrations. The measurement results are compared with the theory of homogeneous nucleation taking or not taking into account the size effect in nucleation. It has been found that, by taking into account the size dependence of the surface tension of a nucleus, better agreement between the theory and experiment is obtained. The boundary of essential instability of the solution, that is, the diffusion spinodal, is computed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Skripov, V.P. and Kukushkin, V.I., Device for Observation of Limiting Superheating of Luquids, Zh. Fiz. Khim., 1961, vol. 35, pp. 2811–2813.

    Google Scholar 

  2. 2.

    Blander, M., Hengstenberg, D., and Katz, J.L., Bubble Nucleation in N-pentane, N-hexane, N-pentane + Hexadecane Mixtures, and Water, J. Phys. Chem., 1971, vol. 75, pp. 3613–3619.

    Article  Google Scholar 

  3. 3.

    Eberhart, J.G., Kremsner, W., and Blander, M., Metastability Limits of Superheated Liquids: Bubble Nucleation Temperatures of Hydrocarbons and Their Mixtures, J. Colloid Interface Sci., 1975, vol. 50, pp. 369–378.

    Article  Google Scholar 

  4. 4.

    Porteous, W. and Blander, M., Limit of Superheat and Explosive Boiling of Light Hydrocarbons, Halocarbons, and Hydrocarbons Mixtures, AIChE J., 1975, vol. 21, pp. 560–566.

    Article  Google Scholar 

  5. 5.

    Mori, Y., Hijikata, K., and Nagatani, T., Effect of Dissolved Gas on Bubble Nucleation, Int. J. Heat Mass Transfer, 1976, vol. 19, pp. 1153–1159.

    Article  ADS  Google Scholar 

  6. 6.

    Forest, T.W. and Ward, C.A., Effect of a Dissolved Gas on the Homogeneous Nucleation Pressure of a Liquid, J. Chem. Phys., 1977, vol. 66, pp. 2322–2330.

    Article  ADS  Google Scholar 

  7. 7.

    Sinitsyn, E.N., Danilov, N.N., and Skripov, V.P., Nucleation in Cyclohexane-Benzol Superheated Liquid Mixtures, in Teplofizika (Thermophysics), Skripov, V.P. and Sheikman, A.G., Eds., Sverdlovsk: UNTs AN SSSR, 1971, pp. 22–26.

    Google Scholar 

  8. 8.

    Skripov, V.P., Biryukova, L. V., Danilov, N.N., and Sinitsyn, E.N., Attainable Superheating of Phenyl Hexafluoride-N-hexane Solutions, in Teplofizicheskie issledovaniya zhidkostei (Thermophysical Research of Liquids), Ermakov, G. V., Ed., Sverdlovsk: UNTs AN SSSR, 1975, pp. 3–5.

    Google Scholar 

  9. 9.

    Danilov, N.N., Sinitsyn, E.N., and Skripov, V.P., Kinetics of Superheated Binary Solutions Boiling-up, in Teplofizika metastabil’nykh system (Thermophysics of Metastable Systems), Pavlov, P.A., Ed., Sverdlovsk: UNTs AN SSSR, 1977, pp. 28–42.

    Google Scholar 

  10. 10.

    Pavlov, P.A. and Skripov, P.V., Determination of Limiting Superheating Temperature for Carbon Dioxide Water Solution, Teplofizika vysokikh temperatur, 1985, vol. 23, pp. 70–76.

    Google Scholar 

  11. 11.

    Nesis, E. I. and Frenkel, Ya. I., Boiling-up of Gassed Liquid, Zh. tekh. fiz., 1952, vol. 22, pp. 1500–1505.

    Google Scholar 

  12. 12.

    Blander, M., Bubble Nucleation in Liquids, Adv. Coll. Int. Sci., 1979, vol. 10, pp. 1–32.

    Article  Google Scholar 

  13. 13.

    Reiss, H. and Shugard, M., On the Composition of Nuclei in Binary Systems, J. Chem. Phys., 1976, vol. 65, pp. 5280–5293.

    Article  ADS  Google Scholar 

  14. 14.

    Volmer, M., Kinetik der Phasenbildung, Th. Steinkopff, Dresden-Leipzig, 1939.

  15. 15.

    Gibbs, J.W., The Collected Works, vol. 2, Thermodynamics, New York: Longmas and Green, 1928.

    Google Scholar 

  16. 16.

    Van der Waals, J.D., and Kohnstamm, Ph., Lehrbuch der Thermodynamik, Leipzig and Amsterdam: Johann-Ambrasius-Barth Verlag, 1908.

    MATH  Google Scholar 

  17. 17.

    Baidakov, V.G., Mezhfaznaya granitsa prostykh klassicheskikh i kvantovykh zhidkostei (Interface of Simple Classical and Quantum Liquids), Yekaterinburg: Nauka, 1994.

    Google Scholar 

  18. 18.

    Baidakov, V.G. and Boltachev, G.Sh., Properties of Critical Nuclei of Liquid and Vapor in Binary Solutions, Zh. Fiz. Khim., 1997, vol. 71, pp. 1965–1970 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 71, no. 11, pp. 1171–1776].

    Google Scholar 

  19. 19.

    Baidakov, V.G., Boltachev, G.Sh., Protsenko, S.P., and Chernykh, G.G., The van der Waals Theory of Capillarity and Computer Simulation, Kolloidnyi Zh., 2002, vol. 64, pp. 734–744 [Colloid Journal (Engl. Transl.), vol. 64, no. 6, pp. 661–670].

    Google Scholar 

  20. 20.

    Boltachev, G.Sh. and Baidakov, V.G., The Influence of Interface Curvature on the Properties of Nuclei of a New Phase in Binary Solution, Kolloidnyi Zh., 2000, vol. 62, pp. 5–11 [Colloid Journal (Engl. Transl.), vol. 62, no. 1, pp. 1–7].

    Google Scholar 

  21. 21.

    Langer, J.S., Theory of the Condensation Point, Ann. Phys., 1967, vol. 41, pp. 108–157.

    Article  ADS  Google Scholar 

  22. 22.

    Baidakov, V.G., Nucleation in Superheated Gas-saturated Solutions: Boiling-up Kinetics, J. Chem. Phys., 1999, vol. 110, pp. 3955–3960.

    Article  ADS  Google Scholar 

  23. 23.

    Baidakov, V.G., Boiling-up Kinetics of Superheated Binary Solutions, Teplofizika Vys. Temp., 1999, vol. 37, pp. 595–601.

    Google Scholar 

  24. 24.

    Baidakov, V.G., Explosive Boiling of Superheated Cryogenic Liquids, Berlin: Wiley-VCH Verlag GmbH, 2007.

    Google Scholar 

  25. 25.

    Zeldovich, Ya.B., On the Theory of New Phase Formation. Cavitation, Zh. Eksp. Teor. Fiz., 1942, vol. 12, pp. 525–538.

    Google Scholar 

  26. 26.

    Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.

    Google Scholar 

  27. 27.

    Baidakov, V.G., Peregrev kriogennykh zhidkostei (Superheating of Cryogenic Liquids), Yekaterinburg: UrO RAN, 1995.

    Google Scholar 

  28. 28.

    Baidakov, V.G., in Nucleation Theory and Applications. Boiling-up Kinetics of Solutions of Cryogenic Liquids, Schmelzer, J.W.P., Ed., Berlin: Wiley-VCH Verlag GmbH, 2005, pp. 19–87.

    Google Scholar 

  29. 29.

    Baidakov, V.G., Kaverin, A.M., and Boltachev, G.Sh., Nucleation in Superheated Liquid Argon-Krypton Solutions, J. Chem. Phys., 1997, vol. 106, pp. 5648–5657.

    Article  ADS  Google Scholar 

  30. 30.

    Sulla, I.I. and Baidakov, V.G., Effects of Small Helium Additions on the Surface Tension of Liquid Oxygen, Vysokochistye Veschestva, 1988, no. 2, pp. 51–55.

  31. 31.

    Baidakov, V.G. and Sulla, I.I., Surface Tension of Helium-Oxygen and Helium-Ethane Solutions, Int. J. Thermophysics, 1995, vol. 16, pp. 909–927.

    Article  Google Scholar 

  32. 32.

    Sulla, I.I. and Baidakov, V.G., Liquid-Vapor Interface in Argon-Krypton System: Experiment, Zh. Fiz. Khim., 1994, vol. 68, pp. 63–66.

    Google Scholar 

  33. 33.

    Kaverin, A.M., Andbaeva V.N., and Baidakov, V.G., Surface Tension at Boundaries of Helium-Argon and Neon-Argon Solutions in the Temperature Interval 108-140 K, Zh. Fiz. Khim., 2006, vol. 80, pp. 495–499.

    Google Scholar 

  34. 34.

    Baidakov, V.G and Kaverin, A.M., Capillary Constant and Surface Tension of Argon-Helium Solution, Zh. Fiz. Khim., 2004, vol. 78, pp. 1150–1152.

    Google Scholar 

  35. 35.

    Baidakov, V.G. and Boltachev, G.Sh., Surface Tension at Liquid-Vapor Interface for Critical Nuclei, Zh. Fiz. Khim., 1995, vol. 69, pp. 515–520.

    Google Scholar 

  36. 36.

    Baidakov, V.G. and Boltachev, G.Sh., Curvature Dependence of the Surface Tension of Liquid and Vapor Nuclei, Phys. Rev. E., 1999, vol. 59, pp. 469–475.

    Article  ADS  Google Scholar 

  37. 37.

    Baidakov, V.G. and Kaverin, A.M., Attainable Superheating of Helium-Oxygen Solutions, Teplofizika Vys. Temp., 2000, vol. 38, pp. 886–894.

    Google Scholar 

  38. 38.

    Baidakov, V.G., Kaverin, A.M., and Boltachev, G.Sh., Experimental Investigations on Nucleation in Helium-Oxygen Mixtures, J. Phys. Chem. B., 2002, vol. 106, pp. 167–175.

    Article  Google Scholar 

  39. 39.

    Kuni, F.M., Melikhov, A.A., Novozhilova, T.Yu., and Terent’ev, I.A., Covariant Formulation of the Multidimensional Kinetic Theory of Phase Transitions of the First Kind, Teor. Matem. Fiz., 1990, vol. 83, pp. 274–290.

    Google Scholar 

  40. 40.

    Trinkaus, H., Theory of the Nucleation of Multicomponent Precipitates, Phys. Rev. B, 1983, vol. 27, pp. 7372–7378.

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. G. Baidakov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baidakov, V.G. Attainable superheating of solutions of cryogenic liquids. J. Engin. Thermophys. 16, 109–118 (2007). https://doi.org/10.1134/S1810232807030022

Download citation

Keywords

  • Nucleation Rate
  • Homogeneous Nucleation
  • Critical Nucleus
  • Engineer THERMOPHYSICS
  • Bubble Nucleation