Skip to main content
Log in

Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data

  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Lorenzi, L. et al., The RNA Atlas expands the catalog of human non-coding RNAs, Nat. Biotechnol., 2021, vol. 39, no. 11, pp. 1453–1465. https://doi.org/10.1038/s41587-021-00936-1

    Article  CAS  PubMed  Google Scholar 

  2. Jens, M. and Rajewsky, N., Competition between target sites of regulators shapes post-transcriptional gene regulation, Nat. Rev. Genet., 2015, vol. 16, no. 2, pp. 113–126. https://doi.org/10.1038/nrg3853

    Article  CAS  PubMed  Google Scholar 

  3. Lee, Y.S. and Dutta, A., MicroRNAs in cancer, Annu. Rev. Pathol. Mech. Dis., 2009, vol. 4, no. 1, pp. 199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  CAS  Google Scholar 

  4. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T., Identification of Novel Genes Coding for Small Expressed RNAs, Science, 2001, vol. 294, no. 5543, pp. 853–858. https://doi.org/10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  5. Ferraro, A. et al., Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGB4-PDCD4) as predictor of metastatic tumor potential, Epigenetics, 2014, vol. 9, no. 1, pp. 129–141. https://doi.org/10.4161/epi.26842

    Article  CAS  PubMed  Google Scholar 

  6. Kumarswamy, R., Volkmann, I., and Thum, T., Regulation and function of miRNA-21 in health and disease, RNA Biol., 2011, vol. 8, no. 5, pp. 706–713. https://doi.org/10.4161/rna.8.5.16154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, Q. et al., miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2, Cell Death Dis., 2018, vol. 9, no. 12, p. 1157. https://doi.org/10.1038/s41419-018-1182-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, Y. et al., Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4, Cancer Gene Ther., 2015, vol. 22, no. 1, pp. 23–29. https://doi.org/10.1038/cgt.2014.66

    Article  CAS  PubMed  Google Scholar 

  9. Xu, L., Wu, Z., Chen, Y., Zhu, Q., Hamidi, S., and Navab, R., MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK, and Bcl-2 in lung squamous carcinoma, gejiu city, china, PLoS One, 2014, vol. 9, no. 8, p. e103698. https://doi.org/10.1371/journal.pone.0103698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin Del Campo, S.E. et al., MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of  metalloproteinases 3 expression: in vivo effects of miR-21 inhibitor, PLoS One, 2015, vol. 10, no. 1, p. e0115919. https://doi.org/10.1371/journal.pone.0115919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng, F., Henson, R., Wehbe–Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T., MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer, Gastroenterology, 2007, vol. 133, no. 2, pp. 647–658. https://doi.org/10.1053/j.gastro.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  12. Hatley, M.E. et al., Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21, Cancer Cell, 2010, vol. 18, no. 3, pp. 282–293. https://doi.org/10.1016/j.ccr.2010.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, H., Han, S., Kwon, C.S., and Lee, D., Biogenesis and regulation of the let-7 miRNAs and their functio-nal implications, Protein Cell, 2016, vol. 7, no. 2, pp. 100–113. https://doi.org/10.1007/s13238-015-0212-y

    Article  CAS  PubMed  Google Scholar 

  14. Balzeau, J., Menezes, M.R., Cao, S., and Hagan, J.P., The LIN28/let-7 pathway in cancer, Front. Genet., 2017, vol. 8. https://doi.org/10.3389/fgene.2017.00031

  15. Yu, F. et al., Let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell, 2007, vol. 131, no. 6, pp. 1109–1123. https://doi.org/10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  16. Kallen, A.N. et al., The imprinted H19 LncRNA antagonizes let-7 microRNAs, Mol. Cell, 2013, vol. 52, no. 1, pp. 101–112. https://doi.org/10.1016/j.molcel.2013.08.027

    Article  CAS  PubMed  Google Scholar 

  17. Cai, W.-Y. et al., Wnt/β-catenin pathway represses let-7 microRNAs expression via transactivation of Lin28 to augment breast cancer stem cell expansion, J. Cell Sci., 2013, p. jcs.123810. https://doi.org/10.1242/jcs.123810

  18. Liang, R. et al., MiR-146a promotes the asymmetric division and inhibits the self-renewal ability of breast cancer stem-like cells via indirect upregulation of Let-7, Cell Cycle, 2018, vol. 17, no. 12, pp. 1445–1456. https://doi.org/10.1080/15384101.2018.1489176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bao, B. et al., Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells, Cancer Prev. Res. (Phila. Pa.), 2012, vol. 5, no. 3, pp. 355–364. https://doi.org/10.1158/1940-6207.CAPR-11-0299

  20. Luo, G. et al., Highly lymphatic metastatic pancreatic cancer cells possess stem cell-like properties, Int. J. Oncol., 2013, vol. 42, no. 3, pp. 979–984. https://doi.org/10.3892/ijo.2013.1780

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad, A. et al., Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs, J. Hematol. Oncol., 2013, vol. 6, no. 1, p. 77. https://doi.org/10.1186/1756-8722-6-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alam, M., Ahmad, R., Rajabi, H., and Kufe, D., MUC1-C induces the LIN28B→LET-7→HMGA2 axis to regulate self-renewal in NSCLC, Mol. Cancer Res., 2015, vol. 13, no. 3, pp. 449–460. https://doi.org/10.1158/1541-7786.MCR-14-0363

    Article  CAS  PubMed  Google Scholar 

  23. Guo, L. et al., Stat3-coordinated Lin-28–let-7–HMGA2 and miR-200–ZEB1 circuits initiate and maintain oncostatin M-driven epithelial–mesenchymal transition, Oncogene, 2013, vol. 32, no. 45, pp. 5272–5282. https://doi.org/10.1038/onc.2012.573

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, R. et al., The acquisition of cancer stem cell-like properties and neoplastic transformation of human keratinocytes induced by arsenite involves epigenetic silencing of let-7c via Ras/NF-κB, Toxicol. Lett., 2014, vol. 227, no. 2, pp. 91–98. https://doi.org/10.1016/j.toxlet.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  25. Appari, M., Babu, K.R., Kaczorowski, A., Gros, W., and Her, I., Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition, Int. J. Oncol., 2014, vol. 45, no. 4, pp. 1391–1400. https://doi.org/10.3892/ijo.2014.2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, X. et al., Lin28/let-7 axis regulates aerobic glycolysis and cancer progression via PDK1, Nat. Commun., 2014, vol. 5, no. 1, p. 5212. https://doi.org/10.1038/ncomms6212

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Y. et al., Lin28 enhances de novo fatty acid synthesis to promote cancer progression via SREBP-1, EMBO Rep., 2019, vol. 20, no. 10, p. e48115. https://doi.org/10.15252/embr.201948115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, J. et al., Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia, J. Hematol. Oncol., 2017, vol. 10, no. 1, p. 138. https://doi.org/10.1186/s13045-017-0507-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ke, G. et al., LightGBM: a highly efficient gradient boosting decision tree, in Proc. 31st Int. Conf. on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 3149–3157.

  30. Pedregosa, F. et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.

    Google Scholar 

  31. Harris, C.R. et al., Array programming with NumPy, Nature, 2020, vol. 585, no. 7825, pp. 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inc, P.T., Collaborative data science. https://plot.ly

  33. Yang, Y. et al., A comprehensive pan-cancer analysis on the immunological role and prognostic value of TYMP in human cancers, Transl. Cancer Res., 2022, vol. 11, no. 9, pp. 3187–3208. https://doi.org/10.21037/tcr-22-502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blum, A.E. et al., RNA sequencing identifies transcriptionally viable gene fusions in esophageal adenocarcinomas, Cancer Res., 2016, vol. 76, no. 19, pp. 5628–5633. https://doi.org/10.1158/0008-5472.CAN-16-0979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaccaro, M.I., Mitchell, F., Rivera, F., and Gonza-lez, C.D., Protein expression in exocrine pancreatic diseases. Focus on VMP1 mediated autophagy, in Advances in Protein Chemistry and Structural Biology, Elsevier, 2022, vol. 132, pp. 175–197. https://doi.org/10.1016/bs.apcsb.2022.07.001

  36. Fang, L. et al., PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway, Cell Death Discovery, 2021, vol. 7, no. 1, p. 32. https://doi.org/10.1038/s41420-021-00410-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberts, A.G.K., Catchpoole, D.R., and Kennedy, P.J., Identification of differentially distributed gene expression and distinct sets of cancer-related genes identified by changes in mean and variability, NAR Genomics Bioinf., 2022, vol. 4, no. 1, p. lqab124. https://doi.org/10.1093/nargab/lqab124

  38. Fancello, L., Kampen, K.R., Hofman, I.J.F., Verbeeck, J., and Keersmaecker, K.D., The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types, Oncotarget, 2017, vol. 8, no. 9, pp. 14462–14478. https://doi.org/10.18632/oncotarget.14895

    Article  PubMed  PubMed Central  Google Scholar 

  39. Malgundkar, S.H. et al., Identification and validation of a novel long non-coding RNA (LINC01465) in ovarian cancer, Hum. Cell, 2022, vol. 36, no. 2, pp. 762–774. https://doi.org/10.1007/s13577-022-00842-x

    Article  CAS  PubMed  Google Scholar 

  40. Ji, Z. et al., C-Myc-activated long non-coding RNA LINC01050 promotes gastric cancer growth and metastasis by sponging miR-7161-3p to regulate SPZ1 expression, J. Exp. Clin. Cancer Res., 2021¸ vol. 40, no. 1, p. 351. https://doi.org/10.1186/s13046-021-02155-7

  41. Gao, L. et al., Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing, Int. J. Cancer, 2015, vol. 136, no. 6. https://doi.org/10.1002/ijc.29169

  42. Zhang, H. et al., FBXO7, a tumor suppressor in endometrial carcinoma, suppresses INF2-associated mitochondrial division, Cell Death Dis., 2023, vol. 14, no. 6, p. 368. https://doi.org/10.1038/s41419-023-05891-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Okada, Y. et al., Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene, Blood, 2003, vol. 101, no. 12, pp. 4748–4756. https://doi.org/10.1182/blood-2002-02-0380

    Article  CAS  PubMed  Google Scholar 

  44. Ali, A. et al., Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC, FEBS Open Bio, 2021, vol. 11, no. 11, pp. 3101–3114. https://doi.org/10.1002/2211-5463.13303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meng, L., Zhang, Q., and Huang, X., Abnormal 5-methylcytosine lncRNA methylome is involved in human high-grade serous ovarian cancer, Am. J. Transl. Res., 2021, vol. 13, no. 12, pp. 13625–13639.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, L. et al., The long non-coding RNA RHPN1-AS1 promotes uveal melanoma progression, Int. J. Mol. Sci., 2017, vol. 18, no. 1, p. 226. https://doi.org/10.3390/ijms18010226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, J. et al., Long non-coding RNA RHPN1-AS1 promotes tumorigenesis and metastasis of ovarian cancer by acting as a ceRNA against miR-596 and upregulating LETM1, Aging, 2020, vol. 12, no. 5, pp. 4558–4572. https://doi.org/10.18632/aging.102911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian, Y., Shi, L., and Luo, Z., Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy, Front. Med., 2020, vol. 7, p. 612393. https://doi.org/10.3389/fmed.2020.612393

    Article  Google Scholar 

  49. Chen, X. and Sun, Z., Novel lincRNA discovery and tissue-specific gene expression across 30 normal human tissues, Genes, 2021, vol. 12, no. 5, p. 614. https://doi.org/10.3390/genes12050614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-74-30019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. V. Solovev or A. S. Evpak.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by M. Batrukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovev, Y.V., Evpak, A.S., Kudriaeva, A.A. et al. Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data. Dokl Biochem Biophys (2024). https://doi.org/10.1134/S1607672924700790

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1607672924700790

Keywords:

Navigation