Skip to main content
Log in

Two Phylogenetic Cohorts of the Nucleocapsid Protein NP and Their Correlation with the Host Range of Influenza A Viruses

  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Influenza A virus has a wide natural areal among birds, mammals, and humans. One of the main regulatory adaptors of the virus host range is the major NP protein of the viral nucleocapsid. Phylogenetic analysis of the NP protein of different viruses has revealed the existence of two phylogenetic cohorts in human influenza virus population. Cohort I includes classical human viruses that caused epidemics in 1957, 1968, 1977. Cohort II includes the H1N1/2009pdm virus, which had a mixed avian–swine origin but caused global human pandemic. Also, the highly virulent H5N1 avian influenza virus emerged in 2021 and caused outbreaks of lethal infections in mammals including humans, appeared to have the NP gene of the second phylogenetic cohort and, therefore, by the type of adaptation to human is similar to the H1N1/2009pdm virus and seems to possess a high epidemic potential for humans. The data obtained shed light on pathways and dynamics of adaptation of avian influenza viruses to humans and propose phylogenetic algorithm for systemic monitoring of dangerous virus strains to predict epidemic harbingers and take immediate preventive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Walker, P.J., Siddell, S.G., Lefkowitz, E.J., et al., Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022), Arch Virol., 2022, vol. 167, no. 11, pp. 2429–2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhirnov, O.P., The unique genome of the virus and alternative strategies for its realization, Acta Nat., 2023, vol. 15, no. 2, pp. 14–19.https://doi.org/10.32607/actanaturae.1190437538802

    Article  CAS  Google Scholar 

  3. Zhirnov, O.P., The host origin of influenza A viruses can be assessed by the intracellular cleavage of the viral nucleocapsid protein, Arch Virol., 1988, vol. 99, nos. 3–4, pp. 277–284.

    Article  CAS  PubMed  Google Scholar 

  4. Mänz, B., Dornfeld, D., Götz, V., Zell, R., Zimmermann, P., Haller, O., Kochs, G., and Schwemmle, M., Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein, PLoS Pathog., 2013, vol. 9, no. 3, p. e1003279. https://doi.org/10.1371/journal.ppat.100327923555271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall, J.S., Teslaa, J.L., Nashold, S.W., et al., Evolution of a reassortant North American gull influenza virus lineage: drift, shift and stability, Virol. J., 2013, vol. 10, p. 179.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lycett, S.J., Duchatel, F., and Digard, P., A brief history of bird flu, Philos. Trans. R. Soc., B, 2019, vol. 374, no. 1775, p. 20180257.

  7. WHO, Ongoing Avian Influenza Outbreaks in Animals Pose Risk to Humans, 2023. www.who.int/news/item/12-07-2023-ongoing-avian-influenza-outbreaks-in-animals-pose-risk-to-humans.

  8. Haller, O. and Kochs, G., Mx genes: host determinants controlling influenza virus infection and trans-species transmission, Hum. Genet., 2020, vol. 139, nos. 6–7, pp. 695–705.

    Article  CAS  PubMed  Google Scholar 

  9. Peacock, T.P., Sheppard, C.M., Lister, M.G., et al., Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in avian influenza virus, J. Virol., 2023, vol. 97, no. 5, p. e0021323.

    Article  PubMed  Google Scholar 

  10. Tome-Amat, J., Ramos, I., Amanor, F., Fernández-Sesma, A., and Ashour, J., Influenza A virus utilizes low-affinity, high-avidity interactions with the nuclear import machinery to ensure infection and immune evasion, J. Virol., 2018, vol. 93, no. 1, p. e01046-18.

    PubMed  PubMed Central  Google Scholar 

  11. Morris, A.K., Wang, Z., Ivey, A.L., Xie, Y., Hill, P.S., Schey, K.L., and Ren, Y., Cellular mRNA export factor UAP56 recognizes nucleic acid binding site of influenza virus NP protein, Biochem. Biophys. Res. Commun., 2020, vol. 525, no. 2, pp. 259–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. York, I. and Donis, R.O., The 2009 pandemic influenza virus: where did it come from, where is it now, and where is it going?, Curr. Top. Microbiol. Immunol., 2013, vol. 370, pp. 241–257.

    PubMed  Google Scholar 

  13. Gamarra-Toledo, V., Plaza, P.I., Inga, G., et al., First mass mortality of marine mammals caused by highly pathogenic influenza virus (H5N1) in South America, bioRxiv, 2023.

  14. Chen, G.W., Gong, Y.N., and Shih, S.R., Influenza A virus plasticity—a temporal analysis of species-associated genomic signatures, J. Formos. Med. Assoc., 2015, vol. 114, no. 5, pp. 456–463.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, B., Xu, S., Liu, M., et al., The nucleoprotein of influenza A virus inhibits the innate immune response by inducing mitophagy, Autophagy, 2023, vol. 19, no. 7, pp. 1916–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi, J., Zeng, X., Cui, P., Yan, C., and Chen, H., Alarming situation of emerging H5 and H7 avian influenza and effective control strategies, Emerging Microbes Infect., 2023, vol. 12, no. 1, p. 2155072.

    Article  Google Scholar 

  17. Adlhoch, C., Fusaro, A., Gonzales, J.L., et al., Avian influenza overview December 2022–March 2023, EFSA J., 2023, vol. 21, no. 3, p. e07917.

    PubMed  PubMed Central  Google Scholar 

  18. Agüero, M., Monne, I., Sánchez, A., et al., Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022, Euro Surveill., 2023, vol. 28, no. 3, p. 2300001.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smith, G.J., Vijaykrishna, D., Bahl, J., et al., Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic, Nature, 2009, vol. 459, no. 7250, pp. 1122–1125.

    Article  CAS  PubMed  Google Scholar 

  20. Worobey, M., Han, G.Z., and Rambaut, A., Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 22, pp. 8107–8112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lvov, D.K., Gulyukin, M.I., Zaberezhniy, A.D., and Gulyukin, A.M., Formation of population gene pools of zoonotic viruses, potentially threatening biosafety, Vopr. Virusol., 2020, vol. 65, no. 5, pp. 243–258.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Zhirnov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Batrukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshova, A.I., Zhirnov, O.P. Two Phylogenetic Cohorts of the Nucleocapsid Protein NP and Their Correlation with the Host Range of Influenza A Viruses. Dokl Biochem Biophys (2024). https://doi.org/10.1134/S1607672924700789

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1607672924700789

Keywords:

Navigation