Skip to main content

Exogenic Melatonin Reduces the Toxic Effect of Polymetallic Stress on Barley Plants

Abstract

The effect of melatonin on growth parameters, the photochemical activity of photosystem II (PS II), the content of the main photosynthetic pigments, and lipid peroxidation in barley plant leaves under polymetallic stress were studied. Melatonin reduces the toxic effect of polymetals on biomass accumulation, root growth, and maintenance of the assimilating surface. The protective action of the hormone is based on its ability to reduce the intensity of oxidative stress by maintaining the level of carotenoids and increasing the activity of superoxide dismutase, but not by regulating the photochemical activity of chloroplasts. The effectiveness of melatonin does not depend on the duration of exposure. The data obtained can be the basis for optimizing the use of melatonin as a plant priming inducer.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Srivastava, V., Sarkar, A., Singh, S., et al., Front. Environ. Sci., 2017, vol. 5, no. 64.

  2. 2

    Bucker-Neto, L., Paiva, A.L., Machado, R.D., et al., Genet. Mol. Biol., 2017, vol. 40, no. 1, pp. 373–386.

    CAS  Article  Google Scholar 

  3. 3

    Bian, M., Zhou, M., Sun, D., et al., Crop J., 2013, vol. 1, no. 2, pp. 91–104.

    Article  Google Scholar 

  4. 4

    Efimova, M.V., Khripach, V.A., Boyko, E.V., et al., Dokl. Biol. Sci., 2018, vol. 478, no. 1, pp. 33–36.

    CAS  Article  Google Scholar 

  5. 5

    Arnao, M.B., Marino, B., and Hernandez-Ruiz, J., Trends Plant Sci., 2019, vol. 24, pp. 38–48.

    CAS  Article  Google Scholar 

  6. 6

    Moustafa-Farag, M., Elkelish, A., Dafea, M., et al., Molecules, 2020, vol. 25, p. 5359.

    CAS  Article  Google Scholar 

  7. 7

    Danilova, E.D., Kolomeichuk, L.V., Efimova, M.V., et al., Dokl. Biochem. Biophys., 2020, vol. 495, pp. 271– 275.

    CAS  Article  Google Scholar 

  8. 8

    Kolomeichuk, L.V., Danilova, E.D., Khripach, V.A., et al., Russ. J. Plant Physiol., 2021, vol. 68, no. 3, pp. 297–307.

    Article  Google Scholar 

  9. 9

    Kholodova, V.P., Vasil’ev, S.V., Efimova, M.V., et al., Russ. J. Plant Physiol., 2018, vol. 65, pp. 882– 889.

    CAS  Article  Google Scholar 

  10. 10

    Xu, L., Zhang, F., Tang, M., et al., J. Pineal Res., vol. 69, no. 12659.

  11. 11

    Nawaz, A., Jiao, Y., Chen, Ch., et al., J. Plant Physiol., 2018, vol. 220, pp. 115–127.

    CAS  Article  Google Scholar 

  12. 12

    Zhang, X., Zhang, H., Zhang, H., et al., Front. Microbiol., 2020, vol. 11, no. 516.

  13. 13

    Li, Z., Wang, P., Menzies, N.W., et al., Ecotoxicol. Environ. Saf., 2018, vol. 147, pp. 872–880.

    CAS  Article  Google Scholar 

  14. 14

    Kopittke, P.M., Blamey, F.P.C., Asher, C.J., et al., J. Exp. Bot., 2010, vol. 61, pp. 945–954.

    CAS  Article  Google Scholar 

  15. 15

    Blamey, F.P.C., Hernandez-Soriano, M.C., Cheng, M., et al., Plant Physiol., 2015, vol. 169, no. 3, pp. 2006– 2020.

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Lichtenthaler, H.K., Methods Enzymol., 1987, vol. 148, pp. 350–382.

    CAS  Article  Google Scholar 

  17. 17

    Buege, J.A. and Aust, S.D., Methods Enzymol., 1978, vol. 52, pp. 302–310.

    CAS  Article  Google Scholar 

  18. 18

    Beauchamp, C. and Fridovich, I., Anal. Biochem., 1971, vol. 44, pp. 276–287.

    CAS  Article  Google Scholar 

  19. 19

    Stahl, W. and Sies, H., Mol. Aspects Med., 2003, vol. 24, no. 6, pp. 345–351.

    CAS  Article  Google Scholar 

  20. 20

    Boyko, E.V., Golovatskaya, I.F., Bender, O.G., et al., Russ. J. Plant Physiol., 2020, vol. 67, pp. 351–359.

    CAS  Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR project number 19-34-90051.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. D. Danilova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danilova, E.D., Zlobin, I.E., Kuznetsov, V.V. et al. Exogenic Melatonin Reduces the Toxic Effect of Polymetallic Stress on Barley Plants. Dokl Biochem Biophys 499, 228–232 (2021). https://doi.org/10.1134/S1607672921040049

Download citation

Keywords:

  • melatonin
  • Hordeum vulgare
  • polymetallic pollution
  • photosynthetic pigments
  • photosystem II
  • lipid peroxidation
  • superoxide dismutase
  • priming