Advertisement

Doklady Biochemistry and Biophysics

, Volume 486, Issue 1, pp 184–186 | Cite as

Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina

  • L. E. Petrovskaya
  • M. V. Roshchin
  • G. R. Smirnova
  • D. E. Kolotova
  • P. M. Balaban
  • M. A. Ostrovsky
  • A. Y. MalyshevEmail author
BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • 22 Downloads

Abstract

To perform optogenetic prosthetics of the retinal ganglion cell receptive field, a bicistronic genetic construct carrying the genes encoding the excitatory (channelrhodopsin-2) and inhibitory (Guillardia theta anion channelrhodopsin GtACR2) rhodopsins was created. A characteristic feature of this construct was the combination of these two genes with a mutant IRES insertion between them, which ensures the exact ratio of expression levels of the first and second genes in each transfected cell. Illumination of the central part of the neuron with light with a wavelength of 470 nm induced the action potential generation in the cell. Stimulation of the peripheral neuronal region with light induced the inhibition of action potential generation. Thus, using optogenetics methods, we simulated the ON–OFF interaction in the retinal ganglion cell receptive field. Theoretically, this construct can be used for optogenetic prosthetics of degenerative retina in the case of its delivery to the ganglion cells with lentiviral vectors.

Notes

REFERENCES

  1. 1.
    Greenberg, K.P., Pham, A., and Werblin, F.S., Neuron, 2011, vol. 69, pp. 713–720.Google Scholar
  2. 2.
    Wu, C., Ivanova, E., Zhang, Y., and Pan, Z.H., PLoS One, 2013, vol. 8. e66332.Google Scholar
  3. 3.
    Dolgikh, D.A., Malyshev, A.Yu., Roshchin, M.V., Smirnova, G.R., Nekrasova, O.V., Petrovskaya, L.E., Feldman, T.B., Balaban, P.M., Kirpichnikov, M.P., and Ostrovsky, M.A., Dokl. Biochem. Biophys., 2016, vol. 471, pp. 440–442.Google Scholar
  4. 4.
    Koh, E.Y., Ho, S.C., Mariati, SongZ., Bi, X., Bardor, M., and Yang, Y., PLoS One, 2013, vol. 8. e82100.Google Scholar
  5. 5.
    Petrovskaya, L.E., Shtefanyuk, V.S., Balaban, P.M., Ostrovsky, M.A., and Malyshev, A.Yu., Neurochem. J., 2017, vol. 11, no. 4, pp. 277–281.Google Scholar
  6. 6.
    Govorunova, E.G., Sineshchekov, O.A., Janz, R., Liu, X., and Spudich, J.L., Science, 2015, vol. 349, no. 6248, pp. 647–650.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. E. Petrovskaya
    • 1
    • 2
  • M. V. Roshchin
    • 3
  • G. R. Smirnova
    • 3
  • D. E. Kolotova
    • 3
    • 4
  • P. M. Balaban
    • 3
  • M. A. Ostrovsky
    • 4
    • 5
  • A. Y. Malyshev
    • 3
    Email author
  1. 1.Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian FederationMoscowRussia
  2. 2.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscowRussia
  4. 4.Faculty of Biology, Moscow State UniversityMoscowRussia
  5. 5.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations