Advertisement

Doklady Biochemistry and Biophysics

, Volume 478, Issue 1, pp 25–29 | Cite as

Phytohormones Regulate the Expression of Nuclear Genes Encoding the Components of the Plastid Transcription Apparatus

  • M. N. Danilova
  • A. A. Andreeva
  • A. S. Doroshenko
  • N. V. Kudryakova
  • Vl. V. Kuznetsov
  • V. V. Kusnetsov
Biochemistry, Biophysics, and Molecular Biology

Abstract

As multifunctional regulators of physiological processes, phytohormones play an important role in the regulation of expression of the plastid genome and chloroplast biogenesis. Hormones can directly regulate the expression of genes localized in the chloroplast genome. However, many components of the plastid transcription apparatus are encoded by nuclear rather than plastid genes. It remains obscure whether these nuclear genes are subject to hormonal regulation. This is the first study to show that phytohormones exert differential effects on the expression of nuclear genes of the transcription machinery of the Arabidopsis thaliana plastome. RT-PCR analysis showed that the level of transcripts of the majority of studied genes was activated by trans-zeatin but decreased under the influence of ABA, methyl jasmonate, and salicylic acid, whereas ethylene had no significant effect, and the effects of brassinolide depended on the illumination conditions. The results of this study indicate that the hormonal regulation of the plastome expression can be mediated by differential regulation of the nuclear genes encoding plastid transcription machinery components.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Börner, T., Aleynikova, A.Y., Zubo, Y.O., and Kusnetsov, V.V., Biochim. Biophys. Acta, 2015, vol. 1847, pp. 761–769.CrossRefPubMedGoogle Scholar
  2. 2.
    Lysenko, E.A., Plant Cell Rep., 2007, vol. 26, pp. 845–859.CrossRefPubMedGoogle Scholar
  3. 3.
    Pfannschmidt, T., Blanvillain, R., Merendino, L., et al., J. Exp. Bot., 2015, vol. 66, pp. 6957–6973.CrossRefPubMedGoogle Scholar
  4. 4.
    Zubo, Y.O., Yamburenko, M.V., Selivankina, S.Yu., et al., Plant Physiol., 2008, vol. 148, pp. 1082–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zubo, Y., Yamburenko, M., Kusnetsov, V., and Börner, Th.J., Plant Physiol., 2011, vol. 168, pp. 1335–1344.CrossRefGoogle Scholar
  6. 6.
    Kilian, J., Whitehead, D., Horak, J., et al., Plant J., 2007, vol. 50, pp. 347–363.CrossRefPubMedGoogle Scholar
  7. 7.
    Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., et al., Plant Mol. Biol., 2017, vol. 93, pp. 533–546.CrossRefPubMedGoogle Scholar
  8. 8.
    Reinbothe, S., Reinbothe, C., Heintzen, C., et al., EMBO J., 1993, vol. 12, pp. 1505–1152.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sato, M., Takahashi, K., Ochiai, Y., et al., Chem. Biochem., 2009, vol. 10, pp. 1227–1233.Google Scholar
  10. 10.
    Yamburenko, M.V., Zubo, Y.O., and Börner, T., Plant J., 2, vol. 82, pp. 1030–1041.Google Scholar
  11. 11.
    Danilova, M.N., Doroshenko, A.S., Zabrodin, D.A., et al., Russ. J. Plant Physiol., 2017, vol. 64, no. 3, pp. 301–309.CrossRefGoogle Scholar
  12. 12.
    Nagashima, A., Hanaoka, M., Shikanai, T., et al., Plant Cell Physiol., 2004, vol. 45, pp. 357–368.CrossRefPubMedGoogle Scholar
  13. 13.
    Efimova, M.V., Kuznetsov, V.V., Kravtsov, A.K., et al., Dokl. Biol. Sci., 2012, vol. 445, pp. 272–275.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Danilova
    • 1
  • A. A. Andreeva
    • 2
  • A. S. Doroshenko
    • 1
  • N. V. Kudryakova
    • 1
  • Vl. V. Kuznetsov
    • 1
    • 2
  • V. V. Kusnetsov
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussia Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations