Doklady Biochemistry and Biophysics

, Volume 478, Issue 1, pp 21–24 | Cite as

Sex Determination Model in Pink Salmon Oncorhynchus gorbuscha (Walbaum, 1792) (Salmonidae, Osteichthyes) Controlled by Multi-Copy Genes Located in Sex Chromosomes

  • A. A. Makhrov
  • V. S. Artamonova
  • O. V. Kolmakova
  • M. V. Ponomareva
Biochemistry, Biophysics, and Molecular Biology


This article is devoted to presenting the hypothesis explaining the fact of a considerable prevalence of phenotypic males among the triploid pink salmon as well as the regular occurrence of intersexes, which were revealed by us. This hypothesis also explains the large proportion (in some cases) in pink salmon populations of the individuals whose genetic sex does not match the phenotypic sex. We assume that the genes encoding the factors that contribute to the transformation of individuals into males (but not the marker sequences of the Y chromosome) are present not only in the Y chromosome of pink salmon but also in the X chromosome, although in smaller quantities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Devlin, R.H. and Nagahama, Y., Aquaculture, 2002, vol. 208, pp. 191–364.CrossRefGoogle Scholar
  2. 2.
    Cotton, S. and Wedekind, C., Trends Ecol. Evol., 2007, vol. 22, pp. 441–443.CrossRefPubMedGoogle Scholar
  3. 3.
    Kaufman, Z.S., Evolyutsiya razmnozheniya i pola (Evolution of Reproduction and Sex), Petrozavodsk: KNTs RAN, 1993, vol. 1.Google Scholar
  4. 4.
    Janousek, B. and Mrackova, M., Biol. J. Linn. Soc., 2010, vol. 100, pp. 737–752.CrossRefGoogle Scholar
  5. 5.
    Pandian, T.J., Sex Determination in Fish, Boca Raton, FL: CRC Press, 2012.Google Scholar
  6. 6.
    Wootton, R.J. and Smith, C., Reproductive Biology of Teleost Fishes, Chichester: Wiley, Ltd., 2015.Google Scholar
  7. 7.
    Anderson, J.L., Rodríguez, Marí A., Braasch, I., Amores, A., Hohenlohe, P., Batzel, P., and Postlethwait, J.H., PLoS ONE, 2012, vol. 7, no. 7, p. e40701.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Persov, G.M., Nauch. Dokl. Vyssh. Shk., Biol. Nauki, 1965, no. 1, pp. 26–30.Google Scholar
  9. 9.
    Heule, C., Salzburger, W., and Bohne, A., Genetics, 2014, vol. 196, pp. 579–591.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Frolov, S.V., Izmenchivost’ i evolyutsiya kariotipov lososevykh ryb (Variation and Evolution of Karyotypes in Salmonids), Vladivostok: Dal’nauka, 2000.Google Scholar
  11. 11.
    Devlin, R.H., Biagi, C.A., and Smailus, D.E., Genetics, 2001, vol. 111, pp. 43–58.Google Scholar
  12. 12.
    Brykov, Vl.A., Kukhlevskii, A.D., and Podlesnykh, A.V., Genetika, 2010, vol. 46, no. 7, pp. 974–980.PubMedGoogle Scholar
  13. 13.
    Gladyshev, M.I., Artamonova, V.S., Makhrov, A.A., Sushchik, N.N., Kalachova, G.S., and Dgebuadze, Yu.Y., Food Chem., 2017, vol. 216, pp. 66–69.CrossRefPubMedGoogle Scholar
  14. 14.
    Ayala, F.J. and Kiger, J.A., Modern Genetics, 2nd ed., Manlo Park, London: The Benjamin/Cummings Publishing Company, Inc., 1984.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Makhrov
    • 1
    • 2
  • V. S. Artamonova
    • 1
    • 2
  • O. V. Kolmakova
    • 2
  • M. V. Ponomareva
    • 3
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biophysics, Krasnoyarsk Research Center, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia
  3. 3.Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations