Skip to main content
Log in

Flavoprotein miniSOG BRET-induced cytotoxicity depends on its intracellular localization

  • Biochemistry, Biophysics, and Molecular Biology
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It is proposed to use the bioluminescent resonance energy transfer to solve the problem of creating the internal light sources in photodynamic therapy of cancer. Energy donor in the developed system is the oxidized form of the luciferase NanoLuc substrate furimamide, and acceptor is the phototoxic fluorescent protein miniSOG. It is shown that, in the proposed system, the photoinduced cytotoxicity of flavoprotein miniSOG in vitro depends on the intracellular localization, and the cytotoxic effect is 48% for the cytoplasmic localization of the fusion protein, 65% for the mitochondrial localization, and 69% for the membrane localization. The obtained data indicate that, for maximization of the photodynamic effect in vivo, it is appropriate to use the NanoLuc–miniSOG fusion protein in the membrane localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaprin, A.D., Starinskii, V.V., and Petrova, G.V., Zlokachestvennye novoobrazovaniya v Rossii v 2015 godu (zabolevaemost’ i smertnost’) (Malignancies in Russia in 2015 (Morbidity and Mortality)), Moscow MNIOI im. P.A. Gertsena, fil. FGBU NMIRTs Minzdrava Rossii, 2017. ISBN 978-5-85502-227-8.

    Google Scholar 

  2. Deyev, S.M., Lebedenko, E.N., Petrovskaya, L.E., Dolgikh, D.A., Gabibov, A.G., and Kirpichnikov, M.P., Russ. Chem. Rev., 2015, vol. 84, no. 1, pp. 1–26.

    Article  CAS  Google Scholar 

  3. Grebenik, E.A., Kostyuk, A.B., and Deyev, S.M., Russ. Chem. Rev., 2016, vol. 85, no. 12, pp. 1277–1296.

    Article  CAS  Google Scholar 

  4. Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M.B., Benink, H.A., Eggers, C.T., Slater, M.R., Meisenheimer, P.L., Klaubert, D.H., Fan, F., Encell, L.P., and Wood, K.V., ACS Chem. Biol., 2012, vol. 7, no. 11, pp. 1848–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., Jin, Y., Ellisman, M.H., and Tsien, R.Y., PLoS Biol., 2011, vol. 9, no. 4, p. e1001041.

    Google Scholar 

  6. Shramova, E.I., Proshkina, G.M., Khodarovich, Yu.M., Chumakov, S.P., and Deyev, S.M., Acta Naturae, 2016, vol. 8, no. 4, pp. 127–133.

    Google Scholar 

  7. Moan, J. and Berg, K., Photochem. Photobiol., 1991, vol. 53, pp. 549–553.

    Article  CAS  PubMed  Google Scholar 

  8. Fabris, C., Valduga, G., Miotto, G., Borsetto, L., Jori, G., Garbisa, S., and Reddi, E., Cancer Res., 2001, vol. 61, no. 20, pp. 7495–7500.

    CAS  PubMed  Google Scholar 

  9. Ryumina, A.P., Serebrovskaya, E.O., Shirmanova, M.V., Snopova, L.B., Kuznetsova, M.M., Turchin, I.V., Ignatova, N.I., Klementieva, N.V., Fradkov, A.F., Shakhov, B.E., Zagaynova, E.V., Lukyanov, K.A., and Lukyanov, S.A., Biochim. Biophys. Acta, 2013, vol. 1830, no. 11, pp. 5059–5067.

    Article  CAS  PubMed  Google Scholar 

  10. Rizzuto, R.L., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T., Curr. Biol., 1995, vol. 5, no. 6, pp. 635–642.

    Article  CAS  PubMed  Google Scholar 

  11. Aronheim, A., Engelberg, D., Li, N., Alawi, N., Schlessinger, J., and Karin, M., Cell, 1994, vol. 78, no. 6, pp. 949–961.

    Article  CAS  PubMed  Google Scholar 

  12. Mironova, K.E., Proshkina, G.M., Ryabova, A.V., Stremovskiy, O.A., Lukyanov, S.A., Petrov, R.V., and Deyev, S.M., Theranostics, 2013, vol. 3, no. 11, pp. 831–840.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Proshkina, G.M., Shilova, O.N., Ryabova, A.V., Stremovskiy, O.A., and Deyev, S.M., Biochimie, 2015, vol. 118, pp. 116–122.

    Article  CAS  PubMed  Google Scholar 

  14. Shilova, O.N., Proshkina, G.M., Ryabova, A.V., and Deyev, S.M., Vestn. Mosk. Univ., Ser. 16: Biol., 2016, no. 1, pp. 17–22.

    Google Scholar 

  15. Girotti, A.W., J. Photochem. Photobiol., 2001, vol. 63, nos. 1–3, pp. 103–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Shramova.

Additional information

Original Russian Text © E.I. Shramova, G.M. Proshkina, S.M. Deyev, R.V. Petrov, 2017, published in Doklady Akademii Nauk, 2017, Vol. 474, No. 5, pp. 633–636.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shramova, E.I., Proshkina, G.M., Deyev, S.M. et al. Flavoprotein miniSOG BRET-induced cytotoxicity depends on its intracellular localization. Dokl Biochem Biophys 474, 228–230 (2017). https://doi.org/10.1134/S160767291703019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S160767291703019X

Navigation