Skip to main content
Log in

Universal Transient Dynamics in Oscillatory Network Models of Epileptic Seizures

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

Discharges of different epilepsies are characterized by different signal shape and duration. The authors adhere to the hypothesis that spike-wave discharges are long transient processes rather than attractors. This helps to explain some experimentally observed properties of discharges, including the absence of a special termination mechanism and quasi-regularity. Analytical approaches mostly cannot be applied to studying transient dynamics in large networks. Therefore, to test the observed phenomena for universality one has to show that the same results can be achieved using different model types for nodes and different connectivity terms. Here, we study a class of simple network models of a thalamocortical system and show that for the same connectivity matrices long, but finite in time quasi-regular processes mimicking epileptic spike-wave discharges can be found using nodes described by three neuron models: FitzHugh – Nagumo, Morris – Lecar and Hodgkin – Huxley. This result takes place both for linear and nonlinear sigmoid coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. van Ooytien, A., van Pelt, J., Corner, M. A., and da Silva, F. H., The Emergence of Long-Lasting Transients of Activity in Simple Neural Networks, Biol. Cybern., 1992, vol. 67, no. 3, pp. 269–277.

    Article  Google Scholar 

  2. Riecke, H., Roxin, A., Madruga, S., and Solla, S. A., Multiple Attractors, Long Chaotic Transients, and Failure in Small-World Networks of Excitable Neurons, Chaos, 2007, vol. 17, no. 2, 026110, 15 pp.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  3. Sysoev, I. V., Ponomarenko, V. I., and Prokhorov, M. D., Reconstruction of Ensembles of Nonlinear Neurooscillators with Sigmoid Coupling Function, Nonlinear Dyn., 2019, vol. 95, no. 3, pp. 2103–2116.

    Article  Google Scholar 

  4. Afraimovich, V. S., Rabinovich, M. I., and Varona, P., Heteroclinic Contours in Neural Ensembles and the Winnerless Competition Principle, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2004, vol. 14, no. 4, pp. 1195–1208.

    Article  MathSciNet  Google Scholar 

  5. Afraimovich, V., Tristan, I., Varona, P., and Rabinovich, M., Transient Dynamics in Complex Systems: Heteroclinic Sequences with Multidimensional Unstable Manifolds, Discontinuity Nonlinearity Complex., 2013, vol. 2, no. 1, pp. 21–41.

    Article  Google Scholar 

  6. Perez Velazquez, J. L., Cortez, M. A., Carter Snead, O. III, and Wennberg, R., Dynamical Regimes Underlying Epileptiform Events: Role of Instabilities and Bifurcations in Brain Activity, Phys. D, 2003, vol. 186, no. 3–4, pp. 205–220.

    Article  MathSciNet  Google Scholar 

  7. Marten, F., Rodrigues, S., Benjamin, O., Richardson, M. P., and Terry, J. R., Onset of Polyspike Complexes in a Mean-Field Model of Human Electroencephalography and Its Application to Absence Epilepsy, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, vol. 367, no. 1891, pp. 1145–1161.

    ADS  MathSciNet  Google Scholar 

  8. Suffczynski, P., Kalitzin, S., and Lopes Da Silva, F. H., Dynamics of Non-Convulsive Epileptic Phenomena Modeled by a Bistable Neuronal Network, Neuroscience, 2004, vol. 126, no. 2, pp. 467–484.

    Article  CAS  PubMed  Google Scholar 

  9. Lytton, W., Computer Modelling of Epilepsy, Nat. Rev. Neurosci., 2008, vol. 9, no. 8, pp. 626–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El Houssaini, K., Bernard, Ch., and Jirsa, V. K., The Epileptor Model: A Systematic Mathematical Analysis Linked to the Dynamics of Seizures, Refractory Status Epilepticus, and Depolarization Block, eNeuro, 2020, vol. 7, no. 2, 54 pp.

    Article  Google Scholar 

  11. Rabinovich, M. I., Zaks, M. A., and Varona, P., Sequential Dynamics of Complex Networks in Mind: Consciousness and Creativity, Phys. Rep. 2020, vol. 883, pp. 1–32.

    Article  ADS  MathSciNet  Google Scholar 

  12. Kapustnikov, A. A., Sysoeva, M. V., and Sysoev, I. V., Modeling Spike-Wave Discharges in the Brain with Small Neurooscillator Networks, Mat. Biolog. Bioinform., 2020, vol. 15, no. 2, pp. 138–147 (Russian).

    Article  Google Scholar 

  13. Lüttjohann, A. and van Luijtelaar, G., The Dynamics of Cortico-Thalamo-Cortical Interactions at the Transition from Pre-Ictal to Ictal LFPs in Absence Epilepsy, Neurobiol. Dis., 2012, vol. 47, no. 1, pp. 47–60.

    Article  Google Scholar 

  14. Sysoeva, M. V., Lüttjohann, A., van Luijtelaar, G., and Sysoev, I. V., Dynamics of Directional Coupling Underlying Spike-Wave Discharges, Neuroscience, 2016, vol. 314, pp. 75–89.

    Article  CAS  PubMed  Google Scholar 

  15. Marescaux, C., Vergnes, M., and Depaulis, A., Genetic Absence Epilepsy in Rats from Strasbourg: A Review, J. Neural. Transm. Suppl., 1992, vol. 35, pp. 37–69.

    CAS  PubMed  Google Scholar 

  16. Coenen, A. M. L. and van Luijtelaar, G., Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats, Behav. Genet., 2003, vol. 33, no. 6, pp. 635–655.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, P. N., Wang, Y., Goodfellow, M., Dauwels, J., Moeller, F., Stephani, U., and Baier, G., A Computational Study of Stimulus Driven Epileptic Seizure Abatement, PLoS One, 2014, vol. 9, no. 12, e114316, 26 pp.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Proske, J. H., Jeanmonod, D., and Verschure, P. F., A Computational Model of Thalamocortical Dysrhythmia, Eur. J. Neurosci., 2011, vol. 33, no. 7, pp. 1281–1290.

    Article  Google Scholar 

  19. Medvedeva, T. M., Sysoeva, M. V., van Luijtelaar, G., and Sysoev, I. V., Modeling Spike-Wave Discharges by a Complex Network of Neuronal Oscillators, Neural Netw., 2018, vol. 98, pp. 271–282.

    Article  PubMed  Google Scholar 

  20. Medvedeva, T. M., Sysoeva, M. V., Lüttjohann, A., van Luijtelaar, G., and Sysoev, I. V., Dynamical Mesoscale Model of Absence Seizures in Genetic Models, PLoS One, 2020, vol. 15, no. 9, e0239125, 23 pp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kapustnikov, A. A., Sysoeva, M. V., and Sysoev, I. V., Transient Dynamics in a Class of Mathematical Models of Epileptic Seizures, Commun. Nonlinear Sci. Numer. Simul. 2022, vol. 109, Paper No. 106284, 9 pp.

    Article  MathSciNet  Google Scholar 

  22. Meeren, H. K. M., Pijn, J. P., Van Luijtelaar, E. L. J. M., Coenen, A. M. L., and Lopes da Silva, F. H., Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in rats, J. Neurosci., 2002, vol. 22, no. 4, pp. 1480–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grishchenko, A. A., van Rijn, C. M., and Sysoev, I. V., Comparative Analysis of Methods for Estimation of Undirected Coupling from Time Series of Intracranial EEGs of Cortex of Rats-Genetic Models of Absence Epilepsy, Mat. Biolog. Bioinform., 2017, vol. 12, no. 2, pp. 317–326.

    Article  Google Scholar 

  24. Badawy, R. A., Harvey, A. S., and Macdonell, R. A., Cortical Hyperexcitability and Epileptogenesis: Understanding the Mechanisms of Epilepsy: Part 1, J. Clin. Neurosci., 2009, vol. 16, no. 3, pp. 355–365.

    Article  CAS  PubMed  Google Scholar 

  25. Badawy, R. A., Harvey, A. S., and Macdonell, R. A., Cortical Hyperexcitability and Epileptogenesis: Understanding the Mechanisms of Epilepsy: Part 2, J. Clin. Neurosci., 2009, vol. 16, no. 4, pp. 485–500.

    Article  PubMed  Google Scholar 

  26. Spencer, S. S., Neural Networks in Human Epilepsy: Evidence Of and Implications for Treatment, Epilepsia, 2002, vol. 43, no. 3, pp. 219–227.

    Article  MathSciNet  PubMed  Google Scholar 

  27. FitzHugh, R., Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophys. J., 1961, vol. 1, no. 6, pp. 445–466.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagumo, J., Arimoto, S., and Yoshizawa, S., An Active Pulse Transmission Line Simulating Nerve Axon, Proc. of the IRE, 1962, vol. 50, no. 10, pp. 2061–2070.

    Article  Google Scholar 

  29. Morris, C. and Lecar, H., Voltage Oscillations in the Barnacle Giant Muscle Fiber, Biophys. J., 1981, vol. 35, no. 1, pp. 193–213.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hodgkin, A. L. and Huxley, A. F., A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve, J. Physiol., 1952, vol. 114, no. 4, pp. 500–544.

    Article  Google Scholar 

  31. Gerster, M., Berner, R., Sawicki, J., Zakharova, A., Škoch, A., Hlinka, J., Lehnertz, K., and Schöll, E., FitzHugh – Nagumo Oscillators on Complex Networks Mimic Epileptic-Seizure-Related Synchronization Phenomena, Chaos, 2020, vol. 30, no. 12, 123130, 12 pp.

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  32. Estarellas, C., Masoliver, M., Masoller, C., and Mirasso, C. R., Characterizing Signal Encoding and Transmission in Class I and Class II Neurons via Ordinal Time-Series Analysis, Chaos, 2020, vol. 30, no. 1, 013123, 15 pp.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  33. Kopell, N., Ermentrout, G. B., Whittington, M. A., and Traub, R. D., Gamma Rhythms and Beta Rhythms Have Different Synchronization Properties, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 4, pp. 1867–1872.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marreiros, A. C., Daunizeau, J., Kiebel, S. J., and Friston, K. J., Population Dynamics: Variance and the Sigmoid Activation Function, Neuroimage, 2008, vol. 42, no. 1, pp. 147–157.

    Article  PubMed  Google Scholar 

  35. Dahlem, M. A., Hiller, G., Panchuk, A., and Schöll, E., Dynamics of Delay-Coupled Excitable Neural Systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2009, vol. 19, no. 2, pp. 745–753.

    Article  MathSciNet  Google Scholar 

  36. Egorov, N. M., Ponomarenko, V. I., Sysoev, I. V., and Sysoeva, M. V., Simulation of Epileptiform Activity Using Network of Neuron-Like Radio Technical Oscillators, Tech. Phys., 2021, vol. 66, no. 3, pp. 505–514; see also: Zh. Tekh. Fiz., 2021, vol. 91, no. 3, pp. 519-528.

    Article  CAS  Google Scholar 

  37. Egorov, N. M., Kulminskiy, D. D., Sysoev, I. V., Ponomarenko, V. I., and Sysoeva, M. V., Transient Dynamics in Electronic Neuron-Like Circuits in Application to Modeling Epileptic Seizures, Nonlinear Dyn., 2022, vol. 108, no. 4, pp. 4231–4242.

    Article  Google Scholar 

  38. Izhikevich, E. M., Which Model to Use for Cortical Spiking Neurons?, IEEE Trans. Neural Netw., 2004, vol. 15, no. 5, pp. 1063–1070.

    Article  PubMed  Google Scholar 

  39. Dmitrichev, A. S., Kasatkin, D. V., Klinshov, V. V., Kirillov, S. Yu., Maslennikov, O. V., Shchapin, D. S., and Nekorkin, V. I., Nonlinear Dynamical Models of Neurons: Review, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2018, vol. 26, no. 4, pp. 5–58 (Russian).

    Google Scholar 

  40. Lenkov, D. N., Volnova, A. B., Pope, A. R. D., and Tsytsarev, V., Advantages and Limitations of Brain Imaging Methods in the Research of Absence Epilepsy in Humans and Animal Models, J. Neurosci. Methods, 2013, vol. 212, no. 2, pp. 195–202.

    Article  PubMed  Google Scholar 

  41. Izhikevich, E. M. and Edelman, G. M., Large-Scale Model of Mammalian Thalamocortical Systems, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 9, pp. 3593–3598.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ching, Sh., Cimenser, A., Purdon, P. L., Brown, E. N., and Kopell, N. J., Thalamocortical Model for a Propofol-Induced \(\alpha\)-Rhythm Associated with Loss of Consciousness, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 52, pp. 22665–22670.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sompolinsky, H., Crisanti, A., and Sommers, H.-J., Chaos in Random Neural Networks, Phys. Rev. Lett., 1988, vol. 61, no. 3, pp. 259–262.

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  44. Kadmon, J. and Sompolinsky, H., Transition to Chaos in Random Neuronal Networks, Phys. Rev. X, 2015, vol. 5, no. 4, 041030, 28 pp.

    Google Scholar 

  45. Lüttjohann, A. and Pape, H. C., Regional Specificity of Cortico-Thalamic Coupling Strength and Directionality during Waxing and Waning of Spike and Wave Discharges, Sci. Rep., 2019, vol. 9, no. 1, 2100, 11 pp.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Hindmarsh, J. L. and Rose, R. M., A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations, Proc. R. Soc. Lond. Ser. B Biol. Sci., 1984, vol. 221, no. 1222, pp. 87–102.

    ADS  CAS  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, Grant No. 19-72-10030-P https://rscf.ru/project/19-72-10030/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anton A. Kapustnikov, Marina V. Sysoeva or Ilya V. Sysoev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

PUBLISHER’S NOTE

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MSC2010

: 34C10, 37N25, 92-08

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustnikov, A.A., Sysoeva, M.V. & Sysoev, I.V. Universal Transient Dynamics in Oscillatory Network Models of Epileptic Seizures. Regul. Chaot. Dyn. 29, 190–204 (2024). https://doi.org/10.1134/S156035472401012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035472401012X

Keywords

Navigation