Skip to main content
Log in

On \(SL(2,\mathbb{R})\)-Cocycles over Irrational Rotations with Secondary Collisions

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider a skew product \(F_{A}=(\sigma_{\omega},A)\) over irrational rotation \(\sigma_{\omega}(x)=x+\omega\) of a circle \(\mathbb{T}^{1}\). It is supposed that the transformation \(A:\mathbb{T}^{1}\to SL(2,\mathbb{R})\) which is a \(C^{1}\)-map has the form \(A(x)=R\big{(}\varphi(x)\big{)}Z\big{(}\lambda(x)\big{)}\), where \(R(\varphi)\) is a rotation in \(\mathbb{R}^{2}\) through the angle \(\varphi\) and \(Z(\lambda)=\text{diag}\{\lambda,\lambda^{-1}\}\) is a diagonal matrix. Assuming that \(\lambda(x)\geqslant\lambda_{0}>1\) with a sufficiently large constant \(\lambda_{0}\) and the function \(\varphi\) is such that \(\cos\varphi(x)\) possesses only simple zeroes, we study hyperbolic properties of the cocycle generated by \(F_{A}\). We apply the critical set method to show that, under some additional requirements on the derivative of the function \(\varphi\), the secondary collisions compensate weakening of the hyperbolicity due to primary collisions and the cocycle generated by \(F_{A}\) becomes uniformly hyperbolic in contrast to the case where secondary collisions can be partially eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Avila, A., Almost Reducibility and Absolute Continuity: 1, arXiv:1006.0704 (2010).

  2. Avila, A. and Bochi, J., A Formula with Some Applications to the Theory of Lyapunov Exponents, Israel J. Math., 2002, vol. 131, pp. 125–137.

    Article  MathSciNet  MATH  Google Scholar 

  3. Avila, A. and Bochi, J., A Uniform Dichotomy for Generic \(\mathrm{SL}(2,\mathbb{R})\) Cocycles over a Minimal Base, Bull. Soc. Math. France, 2007, vol. 135, no. 3, pp. 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  4. Avila, A., Bochi, J., and Damanik, D., Opening Gaps in the Spectrum of Strictly Ergodic Schrödinger Operators, J. Eur. Math. Soc. (JEMS), 2012, vol. 14, no. 1, pp. 61–106.

    Article  MathSciNet  MATH  Google Scholar 

  5. Avila, A. and Krikorian, R., Reducibility or Non-Uniform Hyperbolicity for Quasiperiodic Schrödinger Cocycles, Ann. of Math. (2), 2006, vol. 164, no. 3, pp. 911–940.

    Article  MathSciNet  MATH  Google Scholar 

  6. Barreira, L. and Pesin, Ya., Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia Math. Appl., vol. 115, Cambridge: Cambridge Univ. Press, 2007.

    Book  MATH  Google Scholar 

  7. Bochi, J., Genericity of Zero Lyapunov Exponents, Ergodic Theory Dynam. Systems, 2002, vol. 22, no. 6, pp. 1667–1696.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonatti, Ch., Díaz, L. J., and Viana, M., Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probobalistic Perspective, Encyclopaedia Math. Sci., vol. 102, Berlin: Springer, 2005.

    MATH  Google Scholar 

  9. Benedicks, M. and Carleson, L., The Dynamics of the Hénon Map, Ann. of Math. (2), 1991, vol. 133, no. 1, pp. 73–169.

    Article  MathSciNet  MATH  Google Scholar 

  10. Brjuno, A. D., On Convergence of Transforms of Differential Equations to the Normal Form, Dokl. Akad. Nauk SSSR, 1965, vol. 165, pp. 987–989 (Russian).

    MathSciNet  Google Scholar 

  11. Bourgain, J. and Jitomirskaya, S., Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential, J. Statist. Phys., 2002, vol. 108, no. 5–6, pp. 1203–1218.

    Article  MathSciNet  MATH  Google Scholar 

  12. Buslaev, V. S. and Fedotov, A. A., The Harper Equation: Monodromization without Quasiclassics, St. Petersburg Math. J., 1997, vol. 8, no. 2, pp. 231–254; see also: Algebra i Analiz, 1996, vol. 8, no. 2, pp. 65-97.

    MathSciNet  MATH  Google Scholar 

  13. Eliasson, L. H., Floquet Solutions for the \(1\)-Dimensional Quasi-Periodic Schrödinger Equation, Comm. Math. Phys., 1992, vol. 146, no. 3, pp. 447–482.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fedotov, A. A., The Monodromization Method in the Theory of Almost Periodic Equations, St. Petersburg Math. J., 2014, vol. 25, no. 2, pp. 303–325; see also: Algebra i Analiz, 2013, vol. 25, no. 2, pp. 203-233.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorodetski, A. and Kleptsyn, V., Parametric Furstenberg Theorem on Random Products of \(SL(2,\mathbb{R})\) Matrices, Adv. Math., 2021, vol. 378, Paper No. 107522, 81 pp.

    Article  MathSciNet  MATH  Google Scholar 

  16. Herman, M.-R., Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension \(2\), Comment. Math. Helv., 1983, vol. 58, no. 3, pp. 453–502.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanov, A. V., Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points, Regul. Chaotic Dyn., 2017, vol. 22, no. 5, pp. 479–501.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivanov, A. V., On Singularly Perturbed Linear Cocycles over Irrational Rotations, Regul. Chaotic Dyn., 2021, vol. 26, no. 3, pp. 205–221.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jakobson, M. V., Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps, Comm. Math. Phys., 1981, vol. 81, no. 1, pp. 39–88.

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson, R. and Moser, J., The Rotation Number for Almost Periodic Potentials, Comm. Math. Phys., 1982, vol. 84, no. 3, pp. 403–438.

    Article  MathSciNet  MATH  Google Scholar 

  21. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.

    Book  MATH  Google Scholar 

  22. Khinchin, A. Ya., Continued Fractions, Chicago, Ill.: Univ. of Chicago Press, 1964.

    MATH  Google Scholar 

  23. Lazutkin, V. F., Making Fractals Fat, Regul. Chaotic Dyn., 1999, vol. 4, no. 1, pp. 51–69.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lyalinov, M. A. and Zhu, N. Y., A Solution Procedure for Second-Order Difference Equations and Its Application to Electromagnetic-Wave Diffraction in a Wedge-Shaped Region, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2003, vol. 459, no. 2040, pp. 3159–3180.

    MathSciNet  MATH  Google Scholar 

  25. Puig, J., Reducibility of Quasi-Periodic Skew-Products and the Spectrum of Schrödinger Operators, PhD Dissertation, Universitat de Barcelona, Barcelona, 2004, 211 pp.

  26. Rüssmann, H., On the One-Dimensional Schrödinger Equation with a Quasiperiodic Potential, in Nonlinear Dynamics: Internat. Conf. (New York, 1979), Ann. New York Acad. Sci., vol. 357, New York: New York Acad. Sci., 1980, pp. 90–107.

    Google Scholar 

  27. Sacker, R. J., Linear Skew-Product Dynamical Systems, in Differential Equations: 3rd Mexico-U.S. Sympos. (Mexico City, 1975), C. Imaz (Ed.), Math. Notes and Sympos., vol. 2, Mexico City: Fondo de Cultura Económ., 1976, pp. 87–105.

    Google Scholar 

  28. Sorets, E. and Spencer, Th., Positive Lyapunov Exponents for Schrödinger Operators with Quasi-Periodic Potentials, Comm. Math. Phys., 1991, vol. 142, no. 3, pp. 543–566.

    Article  MathSciNet  MATH  Google Scholar 

  29. Young, L.-S., Lyapunov Exponents for Some Quasi-Periodic Cocycles, Ergodic Theory Dynam. Systems, 1997, vol. 17, no. 2, pp. 483–504.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research was supported by RFBR grant (project No. 20-01-00451/22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Ivanov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

MSC2010

37C55, 37D25, 37C40

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V. On \(SL(2,\mathbb{R})\)-Cocycles over Irrational Rotations with Secondary Collisions. Regul. Chaot. Dyn. 28, 207–226 (2023). https://doi.org/10.1134/S1560354723020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723020053

Keywords

Navigation