Skip to main content

The Role of Tidal Forces in the Long-term Evolution of the Galilean System


The Galilean satellites of Jupiter are called Io, Europa, Ganymede and Callisto. The first three moons are found in the so-called Laplace resonance, which means that their orbits are locked in a \(2:1\) resonant chain. Dissipative tidal effects play a fundamental role, especially when considered on long timescales. The main objective of this work is the study of the persistence of the resonance along the evolution of the system when considering the tidal interaction between Jupiter and Io. To constrain the computational cost of the task, we enhance this dissipative effect by means of a multiplying factor. We develop a simplified model to study the propagation of the tidal effects from Io to the other moons, resulting in the outward migration of the satellites. We provide an analytical description of the phenomenon, as well as the behaviour of the semi-major axis of Io as a function of the figure of merit. We also consider the interaction of the inner trio with Callisto, using a more elaborated Hamiltonian model allowing us to study the long-term evolution of the system along few gigayears. We conclude by studying the possibility of the trapping into resonance of Callisto depending on its initial conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. The mean longitude is defined as \(\lambda_{k}=\varpi_{k}+M_{k}\), \(\varpi_{k}\) being the longitude of the perijove and \(M_{k}\) the mean anomaly of the \(k\)th satellite.

  2. The radius of Jupiter is set equal to \(71492\) km.

  3. The superscripts denote the order of magnitudes: for example, \(\Lambda^{(0)}\) is bigger than the \(X_{k}^{(1)}\) which are bigger than \(\Lambda^{(2)}\).

  4. We have changed the notation used up to now in order to have a clearer view of the dynamics in terms of the Poincaré variables introduced below: the price to pay is that \(q_{3},q_{4}\) are not the best choice to compare with observations and this is the reason to consider also \(q_{3}^{0},q_{4}^{0}\), which are more familiar.

  5. It should be stressed that the librations around \(\frac{\pi}{2}\) and \(\frac{3\pi}{2}\) appearing in Fig. 8 are an artefact due to the pumping factor \(\alpha\) enhancing the tidal interaction.

  6. The case in which only the angle \(\mu\) librates never occurs.


  1. Ferraz-Mello, S., Dynamics of the Galilean Satellites: An Introductory Treatise, Math. Dynam. As-tronom. Ser., vol. 1, São Paulo: Instituto Astronõmico e Geofisico, Universidade de São Paulo, 1979.

    Google Scholar 

  2. Henrard, J., Libration of Laplace’s Argument in the Galilean Satellites Theory, Celestial Mech., 1984, vol. 34, pp. 255–262.

    Article  Google Scholar 

  3. Malhotra, R., Tidal Origin of the Laplace Resonance and the Resurfacing of Ganymede, Icarus, 1991, vol. 94, no. 2, pp. 399–412.

    Article  Google Scholar 

  4. Celletti, A., Paita, F., and Pucacco, G., The Dynamics of the de Sitter Resonance, Celest. Mech. Dyn. Astron., 2018, vol. 130, no. 2, Paper No. 15, 15 pp.

    MathSciNet  Article  Google Scholar 

  5. Papaloizou, J. C. B., The Orbital Evolution of Resonant Chains of Exoplanets Incorporating Circularisation Produced by Tidal Interaction with the Central Star with Application to the HD 158259 and EPIC 245950175 Systems, Celest. Mech. Dyn. Astron., 2021, vol. 133, no. 30, Paper No. 30, 27 pp.

    MathSciNet  Article  Google Scholar 

  6. Yoder, C. F. and Peale, S. J, The Tides of Io, Icarus, 1981, vol. 47, no. 1, pp. 1–35.

    Article  Google Scholar 

  7. Henrard, J., Orbital Evolution of the Galilean Satellites: Capture into Resonance, Icarus, 1983, vol. 53, no. 1, pp. 55–67.

    Article  Google Scholar 

  8. Showman, A. P. and Malhotra, R., Tidal Evolution into the Laplace Resonance and the Resurfacing of Ganymede, Icarus, 1997, vol. 127, no. 1, pp. 93–111.

    Article  Google Scholar 

  9. Lainey, V., Arlot, J.-E., Karatekin, Ö., and Van Hoolst, T., Strong Tidal Dissipation in Io and Jupiter from Astrometric Observations, Nature, 2009, vol. 459, no. 7249, pp. 957–959.

    Article  Google Scholar 

  10. Couturier, J., Robutel, P., and Correia, A. C. M., An Analytical Model for Tidal Evolution in Co-Orbital Systems: 1. Application to Exoplanets, Celest. Mech. Dyn. Astron., 2021, vol. 133, no. 8, Paper No. 37, 30 pp.

    MathSciNet  Article  Google Scholar 

  11. Lari, G., Saillenfest, M., and Fenucci, M., Long-Term Evolution of the Galilean Satellites: The Capture of Callisto into Resonance, Astron. Astrophys., 2020, vol. 639, A40, 20 pp.

    Article  Google Scholar 

  12. JUICE Definition Study Report (Red Book): Exploring the Emergence of Habitable Worlds around Gas Giants, (2014).

  13. Lieske, J. H., Galilean Satellite Evolution: Observational Evidence for Secular Changes in Mean Motions, Astron. Astrophys., 1987, vol. 176, pp. 146–158.

    Google Scholar 

  14. Paita, F., Celletti, A., and Pucacco, G., Element History of the Laplace Resonance: A Dynamical Approach, Astron. Astrophys., 2018, vol. 617, A35, 12 pp.

    Article  Google Scholar 

  15. Celletti, A., Paita, F., and Pucacco, G., The Dynamics of Laplace-Like Resonances, Chaos, 2019, vol. 29, no. 3, 033111, 14 pp.

    MathSciNet  Article  Google Scholar 

  16. Celletti, A., Karampotsiou, E., Lhotka, C., Pucacco, G., and Volpi, M., Laplace-Like Resonances with Tidal Effects, Astron. Astrophys., 2021, vol. 655, A94, 16 pp.

    Article  Google Scholar 

  17. Murray, C. D. and Dermott, S. F., Solar System Dynamics, Cambridge: Cambridge Univ. Press, 2000.

    Book  Google Scholar 

  18. de Sitter, W., Jupiter’s Galilean Satellites (George Darwin Lecture), Mon. Not. R. Astron. Soc., 1931, vol. 91, no. 7, pp. 706–738.

    Article  Google Scholar 

  19. Boué, G. and Efroimsky, M., Tidal Evolution of the Keplerian Elements, Celestial Mech. Dynam. Astronom., 2019, vol. 131, no. 7, Paper No. 30, 46 pp.

    MathSciNet  Article  Google Scholar 

  20. Goldreich, G. and Peale, S, Spin-Orbit Coupling in the Solar System, Astron. J., 1966, vol. 71, pp. 425–438.

    Article  Google Scholar 

  21. Neishtadt, A. I., Averaging and Passage through Resonance, in Proc. Internat. Cong. of Mathematicians (Kyoto, Japan, Aug 1990), Tokyo: Springer, 1991, pp. 1271–1283.

    Google Scholar 

  22. Lainey, V., Quantification of Tidal Parameters from Solar System Data, Celest. Mech. Dyn. Astron., 2016, vol. 126, no. 1–3, pp. 145–156.

    Article  Google Scholar 

  23. Pucacco, G., Normal Forms for the Laplace Resonance, Celest. Mech. Dyn. Astron., 2021, vol. 133, no. 3, Art. 11, 30 pp.

    MathSciNet  Article  Google Scholar 

  24. Laskar, J., Large Scale Chaos and the Spacing of the Inner Planets, Astron. Astrophys., 1997, vol. 317, L75–L78.

    Google Scholar 

  25. Gröbner, W. and Knapp, H., Contributions to the Method of Lie-Series, Mannheim: Bibliographisches Institut, 1967.

    MATH  Google Scholar 

  26. Giorgilli, A., Notes on Hamiltonian Systems, Cambridge: Cambridge Univ. Press, 2022.

    Book  Google Scholar 

  27. Ferraz-Mello, S., Canonical Perturbation Theories: Degenerate Systems and Resonance, New York: Springer, 2007.

    Book  Google Scholar 

  28. Batygin, K. and Morbidelli, A., Dissipative Divergence of Resonant Orbits, Astron. J., 2013, vol. 145, no. 1, Art. 1, 10 pp.

    Article  Google Scholar 

  29. Pichierri, G., Batygin, K., and Morbidelli, A., The Role of Dissipative Evolution for Three-Planet, Near-Resonant Extrasolar Systems, Astron. Astrophys., 2019, vol. 625, A7, 14 pp.

    Article  Google Scholar 

Download references


We acknowledge constant support and advice from S. Ferraz-Mello.


A. C., C. L. and G. P. acknowledge EU-ITN Stardust-R. A. C. (partially) and C. L. acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. A. C. (partially), C. L. and G. P. acknowledge MIUR-PRIN 20178CJA2B “New Frontiers of Celestial Mechanics: Theory and Applications”, ASI Contract no. 2018-25-HH.0 (Scientific Activities for JUICE, C/D phase). C. L., G. P. and M. V. acknowledge the GNFM/INdAM. E. K. and M. V. acknowledge the ASI Contract no. 2018-25-HH.0 (Scientific Activities for JUICE, C/D phase). The research of E.K. was mainly done during her stay at the Dept. of Mathematics, University of Rome Tor Vergata during the years 2019-2021. G. P. is partially supported by INFN (Sezione di Roma II).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mara Volpi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

To the memory of Alexey Borisov


70F10, 70F15


In this appendix we detail the computations of Eqs. (3.23) described in Section 3. Our goal is to transform the equations of the secular contribution due to the tidal effects acting on Io provided by [3]

into their formulation in Delaunay variables. We recall that the parameters \(c\) and \(D\) are defined as follows:
$$\begin{aligned}\displaystyle c=&\frac{9}{2}\frac{k_{0}}{{\cal Q}_{0}}\frac{m_{1}}{m_{0}}\left(\frac{R_{0}}{a_{1}}\right)^{5}n\\ \displaystyle D=&\frac{{\cal Q}_{0}}{{\cal Q}_{1}}\frac{k_{1}}{k_{0}}\left(\frac{R_{1}}{R_{0}}\right)^{5}\left(\frac{m_{0}}{m_{1}}\right)^{2},\end{aligned}$$
where \(m_{\alpha}\) are the masses, \(k_{\alpha}/{\cal Q}_{\alpha}\) the tidal ratios, \(r_{\alpha}\) the radii of Io and Jupiter, and \(n\) is the mean motion of Io. The parameter \(c\) depends on time, and we set its constant part as
$${\texttt{c}_{c}}=\frac{9}{2}\frac{k_{0}}{{\cal Q}_{0}}\frac{m_{1}}{m_{0}}R_{0}^{5},$$
so that
Given the definition of the Delaunay variables
$$L_{i}=\mu_{i}\sqrt{GM_{i}a_{i}},\quad P_{i}\simeq\frac{1}{2}L_{i}e_{i}^{2},$$
and recalling that we enhance the tidal effects by multiplying Eqs. (A.2) by a factor \(\alpha_{P}\), we have the following expression for the derivative (omitting the sub-index \(i=1\) to lighten up the notation):
$$\begin{aligned}\displaystyle\frac{{\rm d}L}{{\rm d}t}=&\mu\sqrt{GM}\frac{\dot{a}}{2\sqrt{a}}=\\ \displaystyle=&\frac{\mu\sqrt{GM}\sqrt{a}}{3}c\left[1-\left(7D-\frac{51}{4}\right)e^{2}\right]=\\ \displaystyle=&\frac{L}{3}{\texttt{c}_{c}}\frac{n}{a^{5}}\left[1-\left(7D-\frac{51}{4}\right)e^{2}\right]\\ \displaystyle=&\frac{L}{3}{\texttt{c}_{c}}\frac{\partial H_{kep}}{\partial L}\frac{1}{a^{5}}\left[1-\left(7D-\frac{51}{4}\right)2\frac{P}{L}\right]=\\ \displaystyle=&\frac{L}{3}{\texttt{c}_{c}}\frac{c_{1}}{L^{3}}\left(\frac{\mu^{2}GM}{L^{2}}\right)^{5}\left[1-\left(7D-\frac{51}{4}\right)2\frac{P}{L}\right]=\\ \displaystyle=&\frac{1}{3}\frac{c_{1}c_{2}}{L^{13}}{\texttt{c}_{c}}\left[L-2\left(7D-\frac{51}{4}\right)P\right].\end{aligned}$$
As we mentioned in Section 2.1, we choose normalised units so that \(Gm_{0}=1\) and \(a_{1}=1\). In light of this, \(c_{1}c_{2}\simeq 1\) and we can write
$$\frac{{\rm d}L}{{\rm d}t}=\left[\frac{1}{3}\alpha_{P}{\texttt{c}_{c}}L-\frac{2}{3}\alpha_{P}{\texttt{c}_{c}}\left(7D-\frac{51}{4}\right)P\right]\frac{1}{L^{13}}.$$

Similarly, we have

$$ \begin{aligned}\displaystyle\frac{{\rm d}P}{{\rm d}t}=&\frac{1}{2}\frac{{\rm d}L}{{\rm d}t}e^{2}+Le\dot{e}=\\ \displaystyle=&\frac{1}{2}\frac{{\rm d}L}{{\rm d}t}e^{2}-\frac{1}{3}Le^{2}\alpha_{P}{\texttt{c}_{c}}\frac{n}{a^{5}}\left(7D-\frac{19}{4}\right)=\\ \displaystyle=&\left[\frac{1}{2}\frac{{\rm d}L}{{\rm d}t}-\frac{1}{3}L\alpha_{P}{\texttt{c}_{c}}\frac{c_{1}c_{2}}{L^{13}}\left(7D-\frac{19}{4}\right)\right]e^{2}=\\ \displaystyle=&\left[\frac{1}{2}\frac{{\rm d}L}{{\rm d}t}-\frac{1}{3}L\alpha_{P}\frac{{\texttt{c}_{c}}}{L^{13}}\left(7D-\frac{19}{4}\right)\right]\frac{2P}{L}=\\ \displaystyle=&\left[-\frac{1}{3}\alpha_{P}{\texttt{c}_{c}}L\left(14D-\frac{21}{2}\right)-\frac{2}{3}\alpha_{P}{\texttt{c}_{c}}P\left(7D-\frac{51}{4}\right)\right]\frac{P}{L^{14}}.\end{aligned}$$
By setting
$$\begin{aligned}\displaystyle f_{1}=&\frac{1}{3}\alpha_{P}{\texttt{c}_{c}},\\ \displaystyle f_{2}=&\frac{2}{3}\alpha_{P}{\texttt{c}_{c}}\left(7D-\frac{51}{4}\right),\\ \displaystyle f_{3}=&\frac{1}{3}\alpha_{P}{\texttt{c}_{c}}\left(14D-\frac{21}{2}\right),\end{aligned}$$
we finally get
$$\begin{gathered}\displaystyle\frac{{\rm d}L}{{\rm d}t}=\frac{f_{1}L-f_{2}P}{L^{13}},\\ \displaystyle\frac{{\rm d}P}{{\rm d}t}=-\frac{f_{3}L+f_{2}P}{L^{14}}P,\end{gathered}$$
i. e., the formulation of Eqs. (3.23).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celletti, A., Karampotsiou, E., Lhotka, C. et al. The Role of Tidal Forces in the Long-term Evolution of the Galilean System. Regul. Chaot. Dyn. 27, 381–408 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Laplace resonance
  • tidal dissipation
  • libration
  • normal form