Skip to main content
Log in

Reduction of Divisors and the Clebsch System

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

There are a few Lax matrices of the Clebsch system. Poles of the Baker – Akhiezer function determine the class of equivalent divisors on the corresponding spectral curves. According to the Riemann – Roch theorem, each class has a unique reduced representative. We discuss properties of such a reduced divisor on the spectral curve of \(3\times 3\) Lax matrix having a natural generalization to \(gl^{*}(n)\) case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, N. H., Mémoire sure une propriété générale d’une class très éntendue des fonctions transcendantes, in Oeuvres complétes: Vol. 1, Christiania: Grondahl, 1881, pp. 145–211.

    Google Scholar 

  2. Adler, M. and van Moerbeke, P., The Kowalewski and Hénon – Heiles Motions As Manakov Geodesic Flows on \({\rm SO}(4)\): A Two-Dimensional Family of Lax Pairs, Comm. Math. Phys., 1988, vol. 113, no. 4, pp. 659–700.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkhangel’skii, Yu. A., Analytical Dynamics of a Rigid Body, Moscow: Nauka, 1977 (Russian).

    Google Scholar 

  4. Belokolos, E. P., Bobenko, A. I., Enol’skii, V. Z., Its, A. R., and Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations, Berlin: Springer, 1994.

  5. Biscani, F. and Izzo, D., A Complete and Explicit Solution to the Three-Dimensional Problem of Two Fixed Centres, Mon. Not. R. Astron. Soc., 2016, vol. 455, no. 4, pp. 3480–3493.

    Article  Google Scholar 

  6. Bobenko, A. I., Euler Equations on the Algebras \(e(3)\) and \({\rm so}(4)\): Isomorphism of the Integrable Cases, Funktsional. Anal. i Prilozhen., 1986, vol. 20, no. 1, pp. 64–66 (Russian).

    Article  MathSciNet  Google Scholar 

  7. Bobenko, A. I., Theta Function Formulae for Classical Tops, Preprint LOMI P-10-87 (1987).

  8. Bolsinov, A. V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Boca Raton, Fla.: CRC, 2004.

    Book  MATH  Google Scholar 

  9. Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    MATH  Google Scholar 

  10. de Brun, F., Rotation kring fix punkt, Öfvers. Kongl. Vetensk.-Akad. Förh. Stokholm, 1893, vol. 7, pp. 455-468.

    MATH  Google Scholar 

  11. Cherednik, I. V., Integrability of the Equation of a Two-Dimensional Asymmetric Chiral O(3) Field and of Its Quantum Analog, Sov. J. Nucl. Phys., 1981, vol. 33, no. 1, pp. 144–145; see also: Yadern.Fizika, 1981, vol. 33, no. 1, pp. 278–282 (Russian).

    Google Scholar 

  12. Chaplygin, S. A., Characteristic Function in Rigid Body Dynamics, in Collected Works:: Vol. 3, Moscow: Gostekhizdat, 1950, pp. 260–282 (Russian).

    Google Scholar 

  13. Clebsch, A., Über die Bewegung eines Körpers in einer Flüssigkeit, Math. Ann., 1870, vol. 3, pp. 238–262.

    Article  MathSciNet  MATH  Google Scholar 

  14. Demin, V. G. and Kiselev, F. I., A New Class of Periodic Motions of a Solid Body with One Fixed Point in a Newtonian Force Field, Sov. Phys. Dokl., 1974, vol. 214, no. 5, pp. 270–272; see also: Dokl. Akad. Nauk SSSR, 1974, vol. 214, no. 5, pp. 997-998.

    MATH  Google Scholar 

  15. Dubrovin, B. A., Theta-Functions and Nonlinear Equations, Russian Math. Surveys, 1981, vol. 36, no. 2, pp. 11–92; see also: Uspekhi Mat. Nauk, 1981, vol. 36, no. 2(218), pp. 11-80.

    Article  MathSciNet  MATH  Google Scholar 

  16. Euler, L., Institutionum calculi integralis: Vol. 1, Petropoli: Acad. Imp. Sci., 1768.

    Google Scholar 

  17. Fedorov, Yu., Magri, F., and Skrypnyk, T., A New Approach to Separation of Variables for the Clebsch Integrable System: Part 1. Reduction to Quadratures, arXiv:2102.03445 (2021).

  18. Fedorov, Yu., Magri, F., and Skrypnyk, T., A New Approach to Separation of Variables for the Clebsch Integrable System: Part 2. Inversion of the Abel – Prym Map, arXiv:2102.03599 (2021).

  19. Halphen G.-H., Sur le mouvement d’un solide dans un liquide, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 1887, vol. 104, pp. 807–811.

    MATH  Google Scholar 

  20. Kharlamova, E. I., On the Motion of a Rigid Body about a Fixed Point in the Central Newtonian Force Field, Izv. Sibirsk. Otdel. Akad. Nauk SSSR, 1959, no. 6, pp. 7–17 (Russian).

    Google Scholar 

  21. Kobb, G., Sur le problème de la rotation d’un corps autour d’un point fixe, Bull. Soc. Math. France, 1895, vol. 23, pp. 210–215.

    Article  MathSciNet  MATH  Google Scholar 

  22. Komarov, I. V. and Tsiganov, A. V., On a Trajectory Isomorphism of the Kowalevski Gyrostat and the Clebsch Problem, J. Phys. A, 2005, vol. 38, no. 13, pp. 2917–2927.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kötter, F., Über die Bewegung eines festen Körpers in einer Flüssigkeit: 1, 2, J. Reine Angew. Math., 1892, vol. 1892, no. 109, pp. 51–81, 89–111.

    Article  MATH  Google Scholar 

  24. Kowalevski, S., Sur le probléme de la rotation d’un corps solide autour d’un point fixe, Acta Math., 1889, vol. 12, pp. 177–232.

    Article  MathSciNet  MATH  Google Scholar 

  25. Magnus, K., Kreisel: Theorie und Anwendungen, Berlin: Springer, 1971.

    Book  MATH  Google Scholar 

  26. Magri, F. and Skrypnyk, T., The Clebsch System, arXiv:1512.04872 (2015).

  27. Marikhin, V. G. and Sokolov, V. V., On Quasi-Stäckel Hamiltonians, Russian Math. Surveys, 2005, vol. 60, no. 5, pp. 981–983; see also: Uspekhi Mat. Nauk, 2005, vol. 60, no. 5(365), pp. 175-176.

    Article  MathSciNet  MATH  Google Scholar 

  28. Marikhin, V. G. and Sokolov, V. V., On the Reduction of the Pair of Hamiltonians Quadratic in Momenta to Canonic Form and Real Partial Separation of Variables for the Clebsch Top, Russian J. Nonlinear Dyn., 2008, vol. 4, no. 3, pp. 313–322.

    Google Scholar 

  29. Minkowski, H., Über die Bewegung eines festen Körpers in einer Flüssigkeit, Sitzungsber. Königl. Preuß. Akad. Wiss. Berlin, 1888, pp. 1095–1110.

  30. Miranda, R., Algebraic Curves and Riemann Surfaces, Grad. Stud. in Math., vol. 5, Providence, R.I.: AMS, 1995.

    Google Scholar 

  31. Mumford, D., Tata Lectures on Theta: Vol. 1, Progr. Math., vol. 28, Boston, Mass.: Birkhäuser, 1983. Mumford, D., Tata Lectures on Theta: 2. Jacobian Theta Functions and Differential Equations, Progr.Math., vol. 43, Boston, Mass.: Birkhäuser, 1984.

    MATH  Google Scholar 

  32. Neumann, C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math., 1859, vol. 56, pp. 46–63.

    MathSciNet  Google Scholar 

  33. Perelomov, A. M., Some Remarks on the Integrability of the Equations of Motion of a Rigid Body in an Ideal Fluid, Funct. Anal. Appl., 1981, vol. 15, no. 2, pp. 144–146; see also: Funktsional. Anal. i Prilozhen., 1981, vol. 15, no. 2, pp. 83-85.

    Article  MathSciNet  MATH  Google Scholar 

  34. Petrera, M. Pfadler, A., and Suris, Yu. B., On Integrability of Hirota – Kimura Type Discretizations, Regul. Chaotic Dyn., 2011, vol. 16, no. 3–4, pp. 245–289.

    Article  MathSciNet  MATH  Google Scholar 

  35. Pop, C. and Ene, R.-D., Stability Problems and Analytical Integration for the Clebsch’s System, Open Math., 2019, vol. 17, no. 1, pp. 242–259.

    Article  MathSciNet  MATH  Google Scholar 

  36. Schottky, F., Über das analytische Problem der Rotation eines starren Körpers in Raume von vier Dimensionen, Sitzungsber. Königl. Preuß. Akad. Wiss. Berlin, 1891, pp. 227–232.

  37. Sklyanin, E. K. and Takebe, T., Separation of Variables in the Elliptic Gaudin Model, Comm. Math. Phys., 1999, vol. 204, no. 1, pp. 17–38.

    Article  MathSciNet  MATH  Google Scholar 

  38. Steklov, V. A., On the Motion of a Rigid Body in a Fluid, Kharkov: Darre, 1893 (Russian).

    Google Scholar 

  39. Stekloff, V. A., Remarque sur un problème de Clebsch sur le mouvement d’un corps solide dans un liqiude indefini en sur le problème de M. de Brun, C. R. Acad. Sci. Paris, 1902, vol. 135, pp. 526–528.

    MATH  Google Scholar 

  40. Tisserand, F., Sur le mouvement des planètes autour du Soleil, d’après la loi électrodynamique de Weber, C. R. Acad. Sci. Paris, 1872, vol. 75, pp. 760–763.

    MATH  Google Scholar 

  41. Tsiganov, A. V., A Note on Elliptic Coordinates on the Lie Algebra e(3), J. Phys. A, 2006, vol. 39, no. 38, L571–L574.

    Article  MathSciNet  MATH  Google Scholar 

  42. Tsyganov, A. V., On an Isomorphism of Integrable Cases of the Euler Equations on the Bi-Hamiltonian Manifolds e(3) and so(4), J. Math. Sci. (N. Y.), 2006, vol. 136, no. 1, pp. 641–3647; see also: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 2004, vol. 317, pp. 200–212, 216.

    MathSciNet  Google Scholar 

  43. Tsyganov, A. V., Compatible Lie – Poisson Brackets on the Lie Algebras e(3) and so(4), Theoret. and Math. Phys., 2007, vol. 151, no. 1, pp. 459–473; see also: Teoret. Mat. Fiz., 2007, vol. 151, no. 1, pp. 26-43.

    Article  MathSciNet  MATH  Google Scholar 

  44. Tsiganov, A. V., On Auto and Hetero Bäcklund Transformations for the Hénon – Heiles Systems, Phys. Lett. A, 2015, vol. 379, no. 45–46, pp. 2903–2907.

    Article  MathSciNet  MATH  Google Scholar 

  45. Tsiganov, A. V., Superintegrable Systems and Riemann – Roch Theorem, J. Math. Phys., 2020, vol. 61, no. 1, 012701, 14 pp.

    Article  MathSciNet  MATH  Google Scholar 

  46. Tsiganov, A. V., Reduction of Divisors for Classical Superintegrable \(GL(3)\) Magnetic Chain, J. Math. Phys., 2020, vol. 61, no. 11, 112703, 11 pp.

    Article  MathSciNet  MATH  Google Scholar 

  47. Tsiganov, A. V., Discretization and Superintegrability All Rolled into One, Nonlinearity, 2020, vol. 33, no. 9, pp. 4924–4939.

    Article  MathSciNet  MATH  Google Scholar 

  48. Tsiganov, A. V., Reduction of Divisors and Kowalevski Top, arXiv:2009.09624 (2020).

  49. Tsiganov, A. V., Reducible Abelian Varieties and Lax Matrices for Euler’s Problem of Two Fixed Centres, arXiv:2104.10362 (2021).

  50. Veselov, A. P., The Landau – Lifshits Equation and Integrable Systems of Classical Mechanics, Dokl. Akad. Nauk SSSR, 1983, vol. 270, no. 5, pp. 1094–1097 (Russian).

    MathSciNet  Google Scholar 

  51. Weber, H., Über die kummersche Fläche vieter Ordnung mit sechzehn Knoterpunkten und ihre Beziehung zu den Thetafunctionen mit zwei Veranderlichen, J. Reine Angew. Math., 1878, vol. 84, pp. 332–354.

    MathSciNet  Google Scholar 

  52. Zhivkov, A. and Christov, O., Effective Solutions of the Clebsch and C. Neumann Systems, in Proc. of the Berlin Mathematical Society (1997–2000), Berlin: Berliner Mathematische Gesellschaft, 2001, pp. 217–242.

    MATH  Google Scholar 

Download references

Funding

The work of A. V. Tsiganov was supported by the Russian Science Foundation (project no. 19-71-30012) and performed at the Steklov Mathematical Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Tsiganov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Dedicated to the memory of Alexey V. Borisov

MSC2010

14D06, 37J35, 58K10, 58K50, 70E15

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiganov, A.V. Reduction of Divisors and the Clebsch System. Regul. Chaot. Dyn. 27, 307–319 (2022). https://doi.org/10.1134/S1560354722030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722030030

Keywords

Navigation