Skip to main content
Log in

The Spherical Kapitza – Whitney Pendulum

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the vertical motion and the period of the horizontal force are commensurate, we prove that there always exists a nonfalling periodic solution, i. e., there exists an initial condition such that, along the corresponding solution, the rod of the pendulum always remains above the horizontal plane passing through the pivot point. We also show numerically that there exists an asymptotically stable nonfalling solution for a wide range of parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stephenson, A., On Induced Stability, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (6), 1908, vol. 15, no. 86, pp. 233–236.

    Article  Google Scholar 

  2. Bogolubov, N. N., Perturbation Theory in Nonlinear Mechanics, Sb. Tr. Inst. Stroit. Mekh. Akad. Nauk Ukr. SSR, 1950, no. 14, pp. 9–34 (Russian).

    Google Scholar 

  3. Kapitza, P. L., Pendulum with a Vibrating Suspension, Usp. Fiz. Nauk,1951, vol. 44, no. 1, pp. 7–20 (Russian). See also: Collected Papers of P. L. Kapitza: Vol. 2, D. ter Haar (Ed.), Oxford: Pergamon, 1965, pp. 726–737.

    Google Scholar 

  4. Kapitza, P. L., Dynamical Stability of a Pendulum When Its Point of Suspension Vibrates, Zh. Èksp. Teor. Fiz.,, 1951, vol. 21, no. 5, pp. 588–597 (Russian). See also: Collected Papers of P. L. Kapitza: Vol. 2, D. ter Haar (Ed.), Oxford: Pergamon, 1965, pp. 714–725.

    Google Scholar 

  5. Artstein, Z., The Pendulum under Vibrations Revisited, Nonlinearity, 2021, vol. 34, no. 1, pp. 394–410.

    Article  MathSciNet  Google Scholar 

  6. Cruz Araujo, G. and Cabral, H. E., Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point, Regul. Chaotic Dyn., 2021, vol. 26, no. 1, pp. 39–60.

    Article  MathSciNet  Google Scholar 

  7. Belyaev, A. K., Morozov, N. F., Tovstik, P. E., Tovstik, T. M., and Tovstik, T. P., Classical Kapitsa’s Problem of Stability of an Inverted Pendulum and Some Generalizations, Acta Mech., 2021, vol. 232, no. 5, pp. 1743–1759.

    Article  MathSciNet  Google Scholar 

  8. Cabral, H. E. and Carvalho, A. C., Parametric Stability of a Charged Pendulum with Oscillating Suspension Point, J. Differential Equations, 2021, vol. 284, pp. 23–38.

    Article  MathSciNet  Google Scholar 

  9. Butikov, E. I., On the Dynamic Stabilization of an Inverted Pendulum, Am. J. Phys., 2001, vol. 69, no. 7, pp. 755–768.

    Article  Google Scholar 

  10. Samoïlenko, A. M., N. N. Bogolyubov and Nonlinear Mechanics, Russian Math. Surveys, 1994, vol. 49, no. 5, pp. 109–154; see also: Uspekhi Mat. Nauk, 1994, vol. 49, no. 5(299), pp. 103-146.

    Article  MathSciNet  Google Scholar 

  11. Landa, P. S., Nonlinear Oscillations and Waves in Dynamical Systems, Math. Appl., vol. 360, Dordrecht: Springer, 2013.

    Google Scholar 

  12. Burd, V., Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications, Boca Raton, Fla.: Chapman & Hall/CRC, 2007.

    Book  Google Scholar 

  13. Bardin, B. S. and Markeyev, A. P., The Stability of the Equilibrium of a Pendulum for Vertical Oscillations of the Point of Suspension, J. Appl. Math. Mech., 1995, vol. 59, no. 6, pp. 879–886; see also: Prikl. Mat. Mekh., 1995, vol. 59, no. 6, pp. 922-929.

    Article  MathSciNet  Google Scholar 

  14. Bartuccelli, M. V., Gentile, G., and Georgiou, K. V., KAM Theory, Lindstedt Series and the Stability of the Upside-Down Pendulum, Discrete Contin. Dyn. Syst., 2003, vol. 9, no. 2, pp. 413–426.

    MathSciNet  MATH  Google Scholar 

  15. Markeyev, A. P., The Dynamics of a Spherical Pendulum with a Vibrating Suspension, J. Appl. Math. Mech., 1999, vol. 63, no. 2, pp. 205–211; see also: Prikl. Mat. Mekh., 1999, vol. 63, no. 2, pp. 213-219.

    Article  MathSciNet  Google Scholar 

  16. Grundy, R., A Two-Scale Analysis for a Spherical Pendulum with a Vertically Vibrating Pivot, Quart. J. Mech. Appl. Math., 2021, vol. 74, no. 2, pp. 137–157.

    Article  MathSciNet  Google Scholar 

  17. Petrov, A. G., On the Equations of Motion of a Spherical Pendulum with a Fluctuating Support, Dokl. Phys., 2005, vol. 50, pp. 588–592.

    Article  Google Scholar 

  18. Srzednicki, R., Periodic and Bounded Solutions in Blocks for Time-Periodic Nonautonomous Ordinary Differential Equations, Nonlinear Anal. Theory Methods Appl., 1994, vol. 22, no. 6, pp. 707–737.

    Article  MathSciNet  Google Scholar 

  19. Bulanchuk, P. O. and Petrov, A. G., Controlling Spherical-Pendulum Motion with the Help of Suspension-Point Vibration, Dokl. Phys., 2010, vol. 55, no. 2, pp. 85–88; see also: Dokl. Akad. Nauk, 2010, vol. 430, no. 5, pp. 627-630.

    Article  Google Scholar 

  20. Bolotin, S. V. and Kozlov, V. V., Calculus of Variations in the Large, Existence of Trajectories in Domains with Boundary, and Whitney’s Inverted Pendulum Problem, Izv. Math., 2015, vol. 79, no. 5, pp. 894–901; see also: Izv. Ross. Akad. Nauk Ser. Mat., 2015, vol. 79, no. 5, pp. 39-46.

    Article  MathSciNet  Google Scholar 

  21. Polekhin, I. Yu., The Method of Averaging for the Kapitza – Whitney Pendulum, Regul. Chaotic Dyn., 2020, vol. 25, no. 4, pp. 401–410.

    Article  MathSciNet  Google Scholar 

  22. Srzednicki, R., Wójcik, K., and Zgliczyński, P., Fixed Point Results Based on the Ważewski Method, in Handbook of Topological Fixed Point Theory, R. F. Brown, M. Furi, L. Górniewicz, B. Jiang (Eds.), Dordrecht: Springer, 2005, pp. 905–943.

    Chapter  Google Scholar 

  23. Polekhin, I., Forced Oscillations of a Massive Point on a Compact Surface with a Boundary, Nonlinear Anal. Theory Methods Appl., 2015, vol. 128, pp. 100–105.

    Article  MathSciNet  Google Scholar 

  24. Sanders, J. A., Verhulst, F., and Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, 2nd ed., Appl. Math. Sci., vol. 59, New York: Springer, 2007.

    Google Scholar 

Download references

Funding

This work has been supported by the Grant of the President of the Russian Federation (Project MK-1826.2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yu. Polekhin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

MSC2010

34C29, 70K65, 34C25

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polekhin, I.Y. The Spherical Kapitza – Whitney Pendulum. Regul. Chaot. Dyn. 27, 65–76 (2022). https://doi.org/10.1134/S1560354722010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722010075

Keywords

Navigation