Skip to main content
Log in

A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

This paper is a small review devoted to the dynamics of a point on a paraboloid. Specifically, it is concerned with the motion both under the action of a gravitational field and without it. It is assumed that the paraboloid can rotate about a vertical axis with constant angular velocity. The paper includes both well-known results and a number of new results.

We consider the two most widespread friction (resistance) models: dry (Coulomb) friction and viscous friction. It is shown that the addition of external damping (air drag) can lead to stability of equilibrium at the saddle point and hence to preservation of the region of bounded motion in a neighborhood of the saddle point. Analysis of three-dimensional Poincaré sections shows that limit cycles can arise in this case in the neighborhood of the saddle point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I., Kozlov, V. V., and Neĭshtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, 3rd ed., Encyclopaedia Math. Sci., vol. 3, Berlin: Springer, 2006.

    Book  Google Scholar 

  2. Bizyaev, I. A., Borisov, A. V., Kozlov, V. V, and Mamaev, I. S., Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems, Nonlinearity, 2019, in press.

  3. Bloch, A. M., Nonholonomic Mechanics and Control, 2nd ed., Interdiscip. Appl. Math., vol. 24, New York: Springer, 2015.

    Book  Google Scholar 

  4. Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Murray, R. M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, no. 1, pp. 21–99.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogoyavlensky, O. I., Integrable Cases of Rigid Body Dynamics and Integrable Systems on Spheres S n, Izv. AN SSSR, 1985, vol. 49, no. 5, pp. 899–915 (Russian).

    Google Scholar 

  6. Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259–318; see also: Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71–132.

    Article  MathSciNet  MATH  Google Scholar 

  7. Borisov, A. V., Kazakov, A. O., and Kuznetsov, S. P., Nonlinear Dynamics of the Rattleback: A Non-holonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.

    Article  Google Scholar 

  8. Borisov, A. V., Kilin, A. A., and Mamaev, I. S., A Nonholonomic Model of the Paul Trap, Regul. Chaotic Dyn., 2018, vol. 23, no. 3, pp. 339–354.

    Article  MathSciNet  MATH  Google Scholar 

  9. Borisov, A. V., Kilin, A. A., and Mamaev, I. S., Stability of Steady Rotations in the Nonholonomic Routh Problem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 239–249.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borisov, A. V. and Mamaev, I. S., Modern Methods of the Theory of Integrable Systems, Moscow: R&C Dynamics, ICS, 2003 (Russian).

    MATH  Google Scholar 

  11. Borisov, A. V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490.

    Article  MathSciNet  MATH  Google Scholar 

  12. Borisov, A. V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.

    Article  Google Scholar 

  13. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.

    Article  MathSciNet  MATH  Google Scholar 

  14. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Jacobi Integral in Nonholonomic Mechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 383–400.

    Article  MathSciNet  MATH  Google Scholar 

  15. Borisov, A. V., Mamaev, I. S., and Kilin, A. A., Rolling of a Ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–219.

    Article  MathSciNet  MATH  Google Scholar 

  16. Bottema, O., Stability of Equilibrium of a Heavy Particle on a Rotating Surface, Z. Angew. Math. Phys., 1976, vol. 27, no. 5, pp. 663–669.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bou-Rabee, N. M., Marsden, J. E., Romero, L. A., Tippe Top Inversion As a Dissipation-Induced Instability, SIAM J. Appl. Dyn. Syst., 2004, vol. 3, no. 3, pp. 352–377.

    Article  MathSciNet  MATH  Google Scholar 

  18. Brouwer, L. E. J., Collected Works: Vol. 2, H. Freudenthal (Ed.), Amsterdam: North-Holland, 1976.

  19. Brouwer, L. E. J., The Motion of a Particle on the Bottom of a Rotating Vessel under the Influence of the Gravitational Force, in Collected Works: Vol. 2, H. Freudenthal (Ed.), Amsterdam: North-Holland, 1976, pp. 665–686.

    Google Scholar 

  20. Cartwright, J. H. E., Feingold, M., and Piro, O., An Introduction to Chaotic Advection, in Mixing: Chaos and Turbulence, H. Chaté, E. Villermaux, J.-M. Chomaz (Eds.), NATO ASI Series (Series B: Physics), vol. 373, Boston, Mass.: Springer, 1999, pp. 307–342.

    Chapter  Google Scholar 

  21. Chaplygin, S. A., On a Paraboloid Pendulum, in Complete Collection of Works: Vol. 1, Leningrad: Izd. Akad. Nauk SSSR, 1933, pp. 194–199 (Russian).

    Google Scholar 

  22. Cheng, Ch. Q. and Sun, Y. S., Existence of Invariant Tori in Three-Dimensional Measure-Preserving Mappings, Celestial Mech. Dynam. Astronom., 1989/90, vol. 47, no. 3, pp. 275–292.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chetayev, N. G., The Stability of Motion, Oxford: Pergamon, 1961.

    Google Scholar 

  24. Dullin, H. R. and Meiss, J. D., Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations, SIAM J. Appl. Dyn. Syst., 2009, vol. 8, no. 1, pp. 76–128.

    Article  MathSciNet  MATH  Google Scholar 

  25. Fan, W., Du, L., Wang, S., and Zhou, H., Confining Rigid Balls by Mimicking Quadrupole Ion Trapping, Am. J. Phys., 2017, vol. 85, no. 11, pp. 821–829.

    Article  Google Scholar 

  26. Fufaev, N. A., A Sphere Rolling on a Horizontal Rotating Plane, J. Appl. Math. Mech., 1983, vol. 47, no. 1, pp. 27–29; see also: Prikl. Mat. Mekh., 1983, vol. 47, no. 1, pp. 43–47.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gantmacher, F. R., The Theory of Matrices: In 2 Vols., New York: Chelsea, 1959.

    MATH  Google Scholar 

  28. Gonchenko, A. S., Gonchenko, S. V., and Kazakov, A. O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  29. Gray, A., Jones, A., and Rimmer, R., Motion under Gravity on a Paraboloid, J. Differential Equations, 1982, vol. 45, no. 2, pp. 168–181.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hasegawa, T. and Bollinger, J. J., Rotating-Radio-Frequency Ion Traps, Phys. Rev. A, 2005, vol. 72, no. 4, 043403, 8 pp.

    Article  Google Scholar 

  31. Huygens, Ch., Horologium oscillatorium, sive De motu pendulorum ad horologia aptato demonstrationes geometricae, Paris: Muguet, 1673.

    Google Scholar 

  32. Jacobi, C. G. J., Vorlesungen über Dynamik, 2nd ed., Berlin: Reimer, 1884.

    MATH  Google Scholar 

  33. Kane, T. R. and Levinson, D. A., A Realistic Solution of the Symmetric Top Problem, ASME J. Appl. Mech., 1978, vol. 45, no. 4, pp. 903–909.

    Article  Google Scholar 

  34. Karapetian, A. V., Global Qualitative Analysis of Tippe Top Dynamics, Mech. Solids, 2008, vol. 43, no. 3, pp. 342–348; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2008, no. 3, pp. 33–41.

    Article  Google Scholar 

  35. Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., The Dynamical Model of the Rolling Friction of Spherical Bodies on a Plane without Slipping, Nelin. Dinam., 2017, vol. 13, no. 4, pp. 599–609 (Russian).

    Article  MathSciNet  MATH  Google Scholar 

  36. Kirillov, O. N., Brouwer’s Problem on a Heavy Particle in a Rotating Vessel: Wave Propagation, Ion Traps, and Rotor Dynamics, Phys. Lett. A, 2011, vol. 375, no. 15, pp. 1653–1660.

    Article  MATH  Google Scholar 

  37. Kirillov, O. N., Nonconservative Stability Problems of Modern Physics, Berlin: de Gruyter, 2013.

    Book  MATH  Google Scholar 

  38. Kirillov, O. N. and Levi, M., Rotating Saddle Trap as Foucault’s Pendulum, Am. J. Phys., 2016, vol. 84, no. 1, pp. 26–31.

    Article  Google Scholar 

  39. Koiller, J., and Ehlers, K., Rubber Rolling over a Sphere, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 127–152.

    Article  MathSciNet  MATH  Google Scholar 

  40. Kozlov, V. V., Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability, Regul. Chaotic Dyn., 2018, vol. 23, no. 1, pp. 26–46.

    Article  MathSciNet  MATH  Google Scholar 

  41. Kuznetsov, A. P., Kuznetsov, S. P., Mosekilde, E., and Turukina, L.V., Two-Parameter Analysis of the Scaling Behavior at the Onset of Chaos: Tricritical and Pseudo-Tricritical Points, Phys. A, 2001, vol. 300, nos. 3–4, pp. 367–385.

    Article  MATH  Google Scholar 

  42. Markeev, A. P., On the Theory of Motion of a Rigid Body with a Vibrating Suspension, Dokl. Phys., 2009, vol. 54, no. 8, pp. 392–396; see also: Dokl. Akad. Nauk, 2009, vol. 427, no. 6, pp. 771–775.

    Article  MATH  Google Scholar 

  43. Meiss, J. D., Miguel, N., Simó, C., and Vieiro, A., Accelerator Modes and Anomalous Diffusion in 3D Volume-Preserving Maps, arXiv:1802.10484 (2018).

    Book  MATH  Google Scholar 

  44. Mireles James, J. D., Quadratic Volume-Preserving Maps: (Un)Stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations, J. Nonlinear Sci., 2013, vol. 23, no. 4, pp. 585–615.

    Article  MathSciNet  MATH  Google Scholar 

  45. Moser, J., Lectures on Hamiltonian systems, vol. 81, Providence, R.I.: American Mathematical Soc., 1968.

    MATH  Google Scholar 

  46. Painlevé, P., Leçons sur l’intégration des équations différentielles de la mécanique et applications, Paris: Hermann, 1895.

    MATH  Google Scholar 

  47. Paul, W., Electromagnetic Traps for Charged and Neutral Particles, Rev. Mod. Phys., 1990, vol. 62, no. 3, pp. 531–540.

    Article  Google Scholar 

  48. Paul, W. and Steinwedel, H., Ein neues Massenspektrometer ohne Magnetfeld, Z. Naturforsch. A, 1953, vol. 8, no. 7, pp. 448–450.

    Article  Google Scholar 

  49. Pearce, R. M., Strong Focussing in a Magnetic Helical Quadrupole Channel, Nucl. Instrum. Methods, 1970, vol. 83, no. 1, pp. 101–108.

    Article  Google Scholar 

  50. Rauch-Wojciechowski, S., Sköldstam, M., and Glad, T., Mathematical Analysis of the Tippe Top, Regul. Chaotic Dyn., 2005, vol. 10, no. 4, pp. 333–362.

    Article  MathSciNet  MATH  Google Scholar 

  51. Routh, E. J., Dynamics of a System of Rigid Bodies: Elementary Part. Being Part 1 of a Treatise on the Whole Subject, 7th ed., rev. and enl., New York: Dover, 1960.

    Google Scholar 

  52. Siegel, C. L. and Moser, J. K., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

    Book  MATH  Google Scholar 

  53. Sokirko, A. V., Belopolskii, A. A., Matytsyn, A. V., and Kossakowski, D. A., Behavior of a Ball on the Surface of a Rotating Disk, Am. J. Phys., 1994, vol. 62, no. 2, pp. 151–156.

    Article  Google Scholar 

  54. Stankevich, N. V., Kuznetsov, N. V., Leonov, G. A., and Chua, L. O., Scenario of the Birth of Hidden Attractors in the Chua Circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 12, 1730038, 18pp.

    Article  MathSciNet  MATH  Google Scholar 

  55. Thompson, R. I., Harmon, T. J., and Ball, M. G., The Rotating-Saddle Trap: A Mechanical Analogy to RF-Electric-Quadrupole Ion Trapping?, Can. J. Phys., 2002, vol. 80, no. 12, pp. 1433–1448.

    Article  Google Scholar 

  56. Thomson, W. and Tait, P. G., A Treatise on Natural Philosophy: Vol. 1, Part 1, Cambridge: Cambridge Univ. Press, 1879, pp. 370–415.

    Google Scholar 

  57. Verhulst, F., Brouwer’s Rotating Vessel: 1. Stabilization, Z. Angew. Math. Phys., 2012, vol. 63, no. 4, pp. 727–736.

    Article  MathSciNet  MATH  Google Scholar 

  58. Wojciechowski, S., Integrable One-Particle Potentials Related to the Neumann System and the Jacobi Problem of Geodesic Motion on an Ellipsoid, Phys. Lett. A, 1985, vol. 107, no. 3, pp. 106–111.

    Article  MathSciNet  MATH  Google Scholar 

  59. Yudovich, V. I., The Dynamics of a Particle on a Smooth Vibrating Surface, J. Appl. Math. Mech., 1998, vol. 62, no. 6, pp. 893–900; see also: Prikl. Mat. Mekh., 1998, vol. 62, no. 6, pp. 968–976.

    Article  MathSciNet  Google Scholar 

  60. https://www.youtube.com/watch?v=9TH5mFHLmfc (2016).

  61. https://www.youtube.com/watch?v=pGlTcnpsY_8 (2016).

Download references

Acknowledgments

The authors express their gratitude to V. V. Kozlov and I. A. Bizyaev for fruitful discussions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexey V. Borisov, Alexander A. Kilin or Ivan S. Mamaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Kilin, A.A. & Mamaev, I.S. A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness. Regul. Chaot. Dyn. 24, 329–352 (2019). https://doi.org/10.1134/S1560354719030067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354719030067

Keywords

MSC2010 numbers

Navigation