Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction

Abstract

Pseudohyperbolic attractors are genuine strange chaotic attractors. They do not contain stable periodic orbits and are robust in the sense that such orbits do not appear under variations. The tangent space of these attractors is split into a direct sum of volume expanding and contracting subspaces and these subspaces never have tangencies with each other. Any contraction in the first subspace, if it occurs, is weaker than contractions in the second one. In this paper we analyze the local structure of several chaotic attractors recently suggested in the literature as pseudohyperbolic. The absence of tangencies and thus the presence of the pseudohyperbolicity is verified using the method of angles that includes computation of distributions of the angles between the corresponding tangent subspaces. Also, we analyze how volume expansion in the first subspace and the contraction in the second one occurs locally. For this purpose we introduce a family of instant Lyapunov exponents. Unlike the well-known finite time ones, the instant Lyapunov exponents show expansion or contraction on infinitesimal time intervals. Two types of instant Lyapunov exponents are defined. One is related to ordinary finite-time Lyapunov exponents computed in the course of standard algorithm for Lyapunov exponents. Their sums reveal instant volume expanding properties. The second type of instant Lyapunov exponents shows how covariant Lyapunov vectors grow or decay on infinitesimal time. Using both instant and finite-time Lyapunov exponents, we demonstrate that average expanding and contracting properties specific to pseudohyperbolicity are typically violated on infinitesimal time. Instantly volumes from the first subspace can sometimes be contacted, directions in the second subspace can sometimes be expanded, and the instant contraction in the first subspace can sometimes be stronger than the contraction in the second subspace.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Kuptsov, P.V. and Politi, A., Large-Deviation Approach to Space-Time Chaos, Phys. Rev. Lett., 2011, vol. 107, no. 11, 114101, 5 pp.

    Article  Google Scholar 

  2. 2.

    Kuptsov, P. V. and Parlitz, U., Strict and Fussy Mode Splitting in the Tangent Space of the Ginzburg–Landau Equation, Phys. Rev. E, 2010, vol. 81, no. 3, 036214, 6 pp.

    Article  Google Scholar 

  3. 3.

    Kuptsov, P. V. and Kuznetsov, S.P., Numerical Test for Hyperbolicity in Chaotic Systems with Multiple Time Delays, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 56, Suppl.C, pp. 227–239.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Yang, H. L., Takeuchi, K.A., Ginelli, F., Chaté, H., and Radons, G., Hyperbolicity and the Effective Dimension of Spatially Extended Dissipative Systems, Phys. Rev. Lett., 2009, vol. 102, no. 7, 074102, 4 pp.

    Article  Google Scholar 

  5. 5.

    Takeuchi, K.A., Yang, H. L., Ginelli, F., Radons, G., and Chaté, H., Hyperbolic Decoupling of Tangent Space and Effective Dimension of Dissipative Systems, Phys. Rev. E, 2011, vol. 84, no. 4, 046214, 19 pp.

    Article  Google Scholar 

  6. 6.

    Sprott, J. C., Elegant Chaos: Algebraically Simple Chaotic Flows, Singapore: World Sci., 2010.

    Google Scholar 

  7. 7.

    Bonatti, Ch., Díaz, L. J., and Viana, M., Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Encyclopaedia Math. Sci., vol. 102, Berlin: Springer-Verlag, 2005.

  8. 8.

    Gonchenko, A. S. and Gonchenko, S.V., Variety of Strange Pseudohyperbolic Attractors in Three-Dimensional Generalized Hénon Maps, Phys. D, 2016, vol. 337, pp. 43–57.

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory, Meccanica, 1980, vol. 15, no. 1, pp. 9–20.

    Article  MATH  Google Scholar 

  10. 10.

    Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., Characterizing Dynamics with Covariant Lyapunov Vectors, Phys. Rev. Lett., 2007, vol. 99, no. 13, 130601, 4 pp.

    Article  Google Scholar 

  11. 11.

    Golub, G.H. and Van Loan, Ch. F., Matrix Computations, 4th ed., Baltimore,Md.: Johns Hopkins Univ., 2013.

    Google Scholar 

  12. 12.

    Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  13. 13.

    Kuptsov, P.V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203(R), 4 pp.

    Google Scholar 

  14. 14.

    Kuptsov, P.V. and Kuznetsov, S.P., Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems, Phys. Rev. E, 2016, vol. 94, no. 1, 010201(R), 7 pp.

    Google Scholar 

  15. 15.

    Kuptsov, P. V. and Parlitz, U., Theory and Computation of Covariant Lyapunov Vectors, J. Nonlinear Sci., 2012, vol. 22, no. 5, pp. 727–762.

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.

    Google Scholar 

  17. 17.

    Kuznetsov, S.P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144; see also: Uspekhi Fiz. Nauk, 2011, vol. 181, no. 2, pp. 121–149.

    Article  Google Scholar 

  18. 18.

    Legras, B. and Vautard, R., A Guide to Lyapunov Vectors, in Proc. ECMWF Seminar on Predictability (Shinfield Park, Reading, UK, Sept 4–8, 1995): Vol. 1, T. Palmer (Ed.), Reading, UK: ECMWF, 1996, pp. 143–156.

    Google Scholar 

  19. 19.

    Shimada, I. and Nagashima, T., A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems, Progr. Theoret. Phys., 1979, vol. 61, no. 6, pp. 1605–1616.

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hogben, L., Handbook of Linear Algebra, 2nd ed., Boca Raton, Fla.: CRC, 2017.

    Google Scholar 

  21. 21.

    Pesin, Ya.B., Lectures on Partial Hyperbolicity and Stable Ergodicity, Zur. Lect. Adv. Math., Zürich: EMS, 2004.

    Google Scholar 

  22. 22.

    Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge: Cambridge Univ. Press, 2016.

    Google Scholar 

  23. 23.

    Wolfe, Ch. L. and Samelson, R.M., An Efficient Method for Recovering Lyapunov Vectors from Singular Vectors, Tellus A, 2007, vol. 59, no. 3, pp. 355–366.

    Article  Google Scholar 

  24. 24.

    Gonchenko, S.V., Gonchenko, A. S., Kazakov, A.O., and Kozlov, A.D., Elements of Contemporary Mathematical Theory of Dynamical Chaos: Part 1. Pseudohyperbolic Attractors, arXiv:1712.04032 (2017).

    Google Scholar 

  25. 25.

    Turaev, D.V. and Shil’nikov, L.P., An Example of a Wild Strange Attractor, Sb. Math., 1998, vol. 189, nos. 1–2, pp. 291–314; see also: Mat. Sb., 1998, vol. 189, no. 2, pp. 137–160.

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Dmitriev, A. S., Efremova, E.V., Maksimov, N.A., and Panas, A. I., Generation of Chaos, Moscow: Tekhnosfera, 2012 (Russian).

    Google Scholar 

  27. 27.

    Turaev, D.V. and Shil’nikov, L.P., Pseudohyperbolicity and the Problem of the Periodic Perturbation of Lorenz-Type Attractors, Dokl. Math., 2008, vol. 77, no. 1, pp. 17–21; see also: Dokl. Akad. Nauk, 2008, vol. 418, no. 1, pp. 23–27.

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Gonchenko, A. S., Gonchenko, S.V., Kazakov, A.O., and Kozlov, A.D., Mathematical Theory of Dynamical Chaos and Its Applications: Review. Part 1. Pseudohyperbolic Attractors, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2017, vol. 25, no. 2, pp. 4–36 (Russian).

    Google Scholar 

  29. 29.

    Lorenz, E.N., Deterministic Nonperiodic Flow, J. Atmospheric Sci., 1963, vol. 20, no. 2, pp. 130–141.

    Article  MATH  Google Scholar 

  30. 30.

    Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, New York: Springer, 1982.

    Google Scholar 

  31. 31.

    Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.

    Google Scholar 

  32. 32.

    Frøyland, J. and Alfsen, K. H., Lyapunov-Exponent Spectra for the Lorenz Model, Phys. Rev. A, 1984, vol. 29, no. 5, pp. 2928–2931.

    Article  Google Scholar 

  33. 33.

    Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).

    Google Scholar 

  34. 34.

    Bykov, V. V. and Shil’nikov, L.P., On the Boundaries of the Domain of Existence of the Lorenz Attractor, Selecta Math. Soviet., 1992, vol. 11, no. 4, pp. 375–382.

    MathSciNet  Google Scholar 

  35. 35.

    Rössler, O.E., An Equation for Continuous Chaos, Phys. Lett. A, 1976, vol. 57, no. 5, pp. 397–398.

    Article  MATH  Google Scholar 

  36. 36.

    Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., and Turaev, D., Three-Dimensional Hénon-Like Maps and Wild Lorenz-Like Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 11, pp. 3493–3508.

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Hunter, J.D., Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 90–95.

    Article  Google Scholar 

  38. 38.

    Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747–817.

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D.V.Anosov (Ed.), Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995.

  40. 40.

    Shilnikov, L.P., Shilnikov, A. L., Turaev, D., and Chua, L.O., Methods of Qualitative Theory in Nonlinear Dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 5, River Edge,N.J.: World Sci., 2001.

  41. 41.

    Gonchenko, S.V., Kazakov, A.O., and Turaev, D., Wild Pseudohyperbolic Attractors in a Four-Dimensional Lorenz System, in preparation (2018).

    Google Scholar 

  42. 42.

    Borisov, A.V., Kazakov, A.O., and Sataev, I.R., Spiral Chaos in the NonholonomicModel of a Chaplygin Top, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 939–954.

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Aston, Ph. J. and Laing, C. R., Symmetry and Chaos in the Complex Ginzburg–Landau Equation: 1. Reflectional Symmetries, Dynam. Stabil. Syst., 1999, vol. 14, no. 3, pp. 233–253.

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Aston, Ph. J. and Laing, C. R., Symmetry and Chaos in the Complex Ginzburg–Landau Equation: 2. Translational Symmetries, Phys. D, 2000, vol. 135, no. 1, pp. 79–97.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Kuptsov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuptsov, P.V., Kuznetsov, S.P. Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction. Regul. Chaot. Dyn. 23, 908–932 (2018). https://doi.org/10.1134/S1560354718070079

Download citation

Keywords

  • chaotic attractor
  • strange pseudohyperbolic attractor
  • method of angles
  • hyperbolic isolation
  • Lyapunov exponents
  • finite-time Lyapunov exponents
  • instant Lyapunov exponents
  • covariant Lyapunov vectors

MSC2010 numbers

  • 37D45
  • 37D30
  • 37D25
  • 65L99
  • 34D08