Regular and Chaotic Dynamics

, Volume 23, Issue 7–8, pp 908–932 | Cite as

Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction

  • Pavel V. KuptsovEmail author
  • Sergey P. Kuznetsov


Pseudohyperbolic attractors are genuine strange chaotic attractors. They do not contain stable periodic orbits and are robust in the sense that such orbits do not appear under variations. The tangent space of these attractors is split into a direct sum of volume expanding and contracting subspaces and these subspaces never have tangencies with each other. Any contraction in the first subspace, if it occurs, is weaker than contractions in the second one. In this paper we analyze the local structure of several chaotic attractors recently suggested in the literature as pseudohyperbolic. The absence of tangencies and thus the presence of the pseudohyperbolicity is verified using the method of angles that includes computation of distributions of the angles between the corresponding tangent subspaces. Also, we analyze how volume expansion in the first subspace and the contraction in the second one occurs locally. For this purpose we introduce a family of instant Lyapunov exponents. Unlike the well-known finite time ones, the instant Lyapunov exponents show expansion or contraction on infinitesimal time intervals. Two types of instant Lyapunov exponents are defined. One is related to ordinary finite-time Lyapunov exponents computed in the course of standard algorithm for Lyapunov exponents. Their sums reveal instant volume expanding properties. The second type of instant Lyapunov exponents shows how covariant Lyapunov vectors grow or decay on infinitesimal time. Using both instant and finite-time Lyapunov exponents, we demonstrate that average expanding and contracting properties specific to pseudohyperbolicity are typically violated on infinitesimal time. Instantly volumes from the first subspace can sometimes be contacted, directions in the second subspace can sometimes be expanded, and the instant contraction in the first subspace can sometimes be stronger than the contraction in the second subspace.


chaotic attractor strange pseudohyperbolic attractor method of angles hyperbolic isolation Lyapunov exponents finite-time Lyapunov exponents instant Lyapunov exponents covariant Lyapunov vectors 

MSC2010 numbers

37D45 37D30 37D25 65L99 34D08 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuptsov, P.V. and Politi, A., Large-Deviation Approach to Space-Time Chaos, Phys. Rev. Lett., 2011, vol. 107, no. 11, 114101, 5 pp.CrossRefGoogle Scholar
  2. 2.
    Kuptsov, P. V. and Parlitz, U., Strict and Fussy Mode Splitting in the Tangent Space of the Ginzburg–Landau Equation, Phys. Rev. E, 2010, vol. 81, no. 3, 036214, 6 pp.CrossRefGoogle Scholar
  3. 3.
    Kuptsov, P. V. and Kuznetsov, S.P., Numerical Test for Hyperbolicity in Chaotic Systems with Multiple Time Delays, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 56, Suppl.C, pp. 227–239.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yang, H. L., Takeuchi, K.A., Ginelli, F., Chaté, H., and Radons, G., Hyperbolicity and the Effective Dimension of Spatially Extended Dissipative Systems, Phys. Rev. Lett., 2009, vol. 102, no. 7, 074102, 4 pp.CrossRefGoogle Scholar
  5. 5.
    Takeuchi, K.A., Yang, H. L., Ginelli, F., Radons, G., and Chaté, H., Hyperbolic Decoupling of Tangent Space and Effective Dimension of Dissipative Systems, Phys. Rev. E, 2011, vol. 84, no. 4, 046214, 19 pp.CrossRefGoogle Scholar
  6. 6.
    Sprott, J. C., Elegant Chaos: Algebraically Simple Chaotic Flows, Singapore: World Sci., 2010.CrossRefzbMATHGoogle Scholar
  7. 7.
    Bonatti, Ch., Díaz, L. J., and Viana, M., Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Encyclopaedia Math. Sci., vol. 102, Berlin: Springer-Verlag, 2005.Google Scholar
  8. 8.
    Gonchenko, A. S. and Gonchenko, S.V., Variety of Strange Pseudohyperbolic Attractors in Three-Dimensional Generalized Hénon Maps, Phys. D, 2016, vol. 337, pp. 43–57.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory, Meccanica, 1980, vol. 15, no. 1, pp. 9–20.CrossRefzbMATHGoogle Scholar
  10. 10.
    Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., Characterizing Dynamics with Covariant Lyapunov Vectors, Phys. Rev. Lett., 2007, vol. 99, no. 13, 130601, 4 pp.CrossRefGoogle Scholar
  11. 11.
    Golub, G.H. and Van Loan, Ch. F., Matrix Computations, 4th ed., Baltimore,Md.: Johns Hopkins Univ., 2013.zbMATHGoogle Scholar
  12. 12.
    Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.CrossRefzbMATHGoogle Scholar
  13. 13.
    Kuptsov, P.V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203(R), 4 pp.Google Scholar
  14. 14.
    Kuptsov, P.V. and Kuznetsov, S.P., Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems, Phys. Rev. E, 2016, vol. 94, no. 1, 010201(R), 7 pp.Google Scholar
  15. 15.
    Kuptsov, P. V. and Parlitz, U., Theory and Computation of Covariant Lyapunov Vectors, J. Nonlinear Sci., 2012, vol. 22, no. 5, pp. 727–762.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kuznetsov, S.P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.CrossRefzbMATHGoogle Scholar
  17. 17.
    Kuznetsov, S.P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144; see also: Uspekhi Fiz. Nauk, 2011, vol. 181, no. 2, pp. 121–149.CrossRefGoogle Scholar
  18. 18.
    Legras, B. and Vautard, R., A Guide to Lyapunov Vectors, in Proc. ECMWF Seminar on Predictability (Shinfield Park, Reading, UK, Sept 4–8, 1995): Vol. 1, T. Palmer (Ed.), Reading, UK: ECMWF, 1996, pp. 143–156.Google Scholar
  19. 19.
    Shimada, I. and Nagashima, T., A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems, Progr. Theoret. Phys., 1979, vol. 61, no. 6, pp. 1605–1616.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hogben, L., Handbook of Linear Algebra, 2nd ed., Boca Raton, Fla.: CRC, 2017.zbMATHGoogle Scholar
  21. 21.
    Pesin, Ya.B., Lectures on Partial Hyperbolicity and Stable Ergodicity, Zur. Lect. Adv. Math., Zürich: EMS, 2004.CrossRefzbMATHGoogle Scholar
  22. 22.
    Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge: Cambridge Univ. Press, 2016.CrossRefzbMATHGoogle Scholar
  23. 23.
    Wolfe, Ch. L. and Samelson, R.M., An Efficient Method for Recovering Lyapunov Vectors from Singular Vectors, Tellus A, 2007, vol. 59, no. 3, pp. 355–366.CrossRefGoogle Scholar
  24. 24.
    Gonchenko, S.V., Gonchenko, A. S., Kazakov, A.O., and Kozlov, A.D., Elements of Contemporary Mathematical Theory of Dynamical Chaos: Part 1. Pseudohyperbolic Attractors, arXiv:1712.04032 (2017).zbMATHGoogle Scholar
  25. 25.
    Turaev, D.V. and Shil’nikov, L.P., An Example of a Wild Strange Attractor, Sb. Math., 1998, vol. 189, nos. 1–2, pp. 291–314; see also: Mat. Sb., 1998, vol. 189, no. 2, pp. 137–160.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dmitriev, A. S., Efremova, E.V., Maksimov, N.A., and Panas, A. I., Generation of Chaos, Moscow: Tekhnosfera, 2012 (Russian).Google Scholar
  27. 27.
    Turaev, D.V. and Shil’nikov, L.P., Pseudohyperbolicity and the Problem of the Periodic Perturbation of Lorenz-Type Attractors, Dokl. Math., 2008, vol. 77, no. 1, pp. 17–21; see also: Dokl. Akad. Nauk, 2008, vol. 418, no. 1, pp. 23–27.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gonchenko, A. S., Gonchenko, S.V., Kazakov, A.O., and Kozlov, A.D., Mathematical Theory of Dynamical Chaos and Its Applications: Review. Part 1. Pseudohyperbolic Attractors, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 2017, vol. 25, no. 2, pp. 4–36 (Russian).Google Scholar
  29. 29.
    Lorenz, E.N., Deterministic Nonperiodic Flow, J. Atmospheric Sci., 1963, vol. 20, no. 2, pp. 130–141.CrossRefzbMATHGoogle Scholar
  30. 30.
    Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, New York: Springer, 1982.CrossRefzbMATHGoogle Scholar
  31. 31.
    Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.CrossRefzbMATHGoogle Scholar
  32. 32.
    Frøyland, J. and Alfsen, K. H., Lyapunov-Exponent Spectra for the Lorenz Model, Phys. Rev. A, 1984, vol. 29, no. 5, pp. 2928–2931.CrossRefGoogle Scholar
  33. 33.
    Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).Google Scholar
  34. 34.
    Bykov, V. V. and Shil’nikov, L.P., On the Boundaries of the Domain of Existence of the Lorenz Attractor, Selecta Math. Soviet., 1992, vol. 11, no. 4, pp. 375–382.MathSciNetGoogle Scholar
  35. 35.
    Rössler, O.E., An Equation for Continuous Chaos, Phys. Lett. A, 1976, vol. 57, no. 5, pp. 397–398.CrossRefzbMATHGoogle Scholar
  36. 36.
    Gonchenko, S. V., Ovsyannikov, I. I., Simó, C., and Turaev, D., Three-Dimensional Hénon-Like Maps and Wild Lorenz-Like Attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2005, vol. 15, no. 11, pp. 3493–3508.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hunter, J.D., Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 2007, vol. 9, no. 3, pp. 90–95.CrossRefGoogle Scholar
  38. 38.
    Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747–817.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D.V.Anosov (Ed.), Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995.Google Scholar
  40. 40.
    Shilnikov, L.P., Shilnikov, A. L., Turaev, D., and Chua, L.O., Methods of Qualitative Theory in Nonlinear Dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 5, River Edge,N.J.: World Sci., 2001.Google Scholar
  41. 41.
    Gonchenko, S.V., Kazakov, A.O., and Turaev, D., Wild Pseudohyperbolic Attractors in a Four-Dimensional Lorenz System, in preparation (2018).Google Scholar
  42. 42.
    Borisov, A.V., Kazakov, A.O., and Sataev, I.R., Spiral Chaos in the NonholonomicModel of a Chaplygin Top, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 939–954.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Aston, Ph. J. and Laing, C. R., Symmetry and Chaos in the Complex Ginzburg–Landau Equation: 1. Reflectional Symmetries, Dynam. Stabil. Syst., 1999, vol. 14, no. 3, pp. 233–253.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Aston, Ph. J. and Laing, C. R., Symmetry and Chaos in the Complex Ginzburg–Landau Equation: 2. Translational Symmetries, Phys. D, 2000, vol. 135, no. 1, pp. 79–97.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of electronics and mechanical engineeringYuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Udmurt State UniversityIzhevskRussia
  3. 3.Kotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratovRussia

Personalised recommendations