Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 7–8, pp 803–820 | Cite as

Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body

  • Alexey V. BorisovEmail author
  • Sergey P. Kuznetsov
Article

Abstract

This paper addresses the problem of a rigid body moving on a plane (a platform) whose motion is initiated by oscillations of a point mass relative to the body in the presence of the viscous friction force applied at a fixed point of the platform and having in one direction a small (or even zero) value and a large value in the transverse direction. This problem is analogous to that of a Chaplygin sleigh when the nonholonomic constraint prohibiting motions of the fixed point on the platform across the direction prescribed on it is replaced by viscous friction. We present numerical results which confirm correspondence between the phenomenology of complex dynamics of the model with a nonholonomic constraint and a system with viscous friction — phase portraits of attractors, bifurcation diagram, and Lyapunov exponents. In particular, we show the possibility of the platform’s motion being accelerated by oscillations of the internal mass, although, in contrast to the nonholonomic model, the effect of acceleration tends to saturation. We also show the possibility of chaotic dynamics related to strange attractors of equations for generalized velocities, which is accompanied by a two-dimensional random walk of the platform in a laboratory reference system. The results obtained may be of interest to applications in the context of the problem of developing robotic mechanisms for motion in a fluid under the action of the motions of internal masses.

Keywords

Chaplygin sleigh friction parametric oscillator strange attractor Lyapunov exponents chaotic dynamics fish-like robot 

MSC2010 numbers

37C10 34D45 37E30 34C60 37J60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yuh, J., Design and Control of Autonomous Underwater Robots: A Survey, Auton. Robots, 2000, vol. 8, no. 1, pp. 7–24.CrossRefGoogle Scholar
  2. 2.
    Whitcomb, L., Yoerger, D. R., Singh, H., and Howland, J., Advances in Underwater Robot Vehicles for Deep Ocean Exploration: Navigation, Control, and Survey Operations, in Robotics Research, J.M. Hollerbach, D. E. Koditschek (Eds.), London: Springer, 2000, pp. 439–448.CrossRefGoogle Scholar
  3. 3.
    Karavaev, Yu. L., Kilin, A.A., and Klekovkin, A. V., Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 918–926.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andersen, A., Pesavento, U., and Wang, Z. J., Analysis of Transitions between Fluttering, Tumbling and Steady Descent of Falling Cards, J. Fluid Mech., 2005, vol. 541, pp. 91–104.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Pesavento, U. and Wang, Z. J., Falling Paper: Navier–Stokes Solutions, Model of Fluid Forces, and Center of Mass Elevation, Phys. Rev. Lett., 2004, vol. 93, no. 14, 144501, 4 pp.CrossRefGoogle Scholar
  6. 6.
    Tanabe, Y. and Kaneko, K., Tanabe and Kaneko Reply, Phys. Rev. Lett., 1995, vol. 75, no. 7, p. 1421.CrossRefGoogle Scholar
  7. 7.
    Kozlov, V.V., On the Problem of Fall of a Rigid Body in a Resisting Medium, Mosc. Univ. Mech. Bull., 1990, vol. 45, no. 1, pp. 30–36; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, pp. 79–86.zbMATHGoogle Scholar
  8. 8.
    Kuznetsov, S.P., Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 345–382.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Borisov, A. V., Kuznetsov, S.P., Mamaev, I. S., and Tenenev, V.A., Describing the Motion of a Body with an Elliptical Cross Section in a Viscous Uncompressible Fluid by Model Equations Reconstructed from Data Processing, Tech. Phys. Lett., 2016, vol. 42, no. 9, pp. 886–890; see also: Pis’ma Zh. Tekh. Fiz., 2016, vol. 42, no. 17, pp. 9–19.CrossRefGoogle Scholar
  10. 10.
    Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carathéodory, C., Der Schlitten, Z. Angew. Math. Mech., 1933, vol. 13, no. 2, pp. 71–76.CrossRefzbMATHGoogle Scholar
  12. 12.
    Borisov, A.V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156–161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219–225.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Borisov, A. V. and Kuznetsov, S.P., Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 792–803.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kuznetsov, S.P., Regular and Chaotic Motions of the Chaplygin Sleigh with Periodically Switched Location of Nonholonomic Constraint, Europhys. Lett., 2017, vol. 118, no. 1, 10007, 10 pp.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kuznetsov, S.P., Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint, Regul. Chaotic Dyn., 2018, vol. 23, no. 2, pp. 178–192.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bizyaev, I. A., Borisov, A.V., and Kuznetsov, S.P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, Europhys. Lett., 2017, vol. 119, no. 6, 60008, 7 pp.CrossRefGoogle Scholar
  17. 17.
    Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 957–977.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bizyaev, I. A., Borisov, A.V., and Kuznetsov, S.P., The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass, Nonlinear Dyn., 2018, 16 pp.Google Scholar
  19. 19.
    Tallapragada, Ph. and Fedonyuk, V., Steering a Chaplygin Sleigh Using Periodic Impulses, J. Comput. Nonlinear Dynam., 2017, vol. 12, no. 5, 054501, 5 pp.CrossRefGoogle Scholar
  20. 20.
    Fedonyuk, V. and Tallapragada, Ph., Stick-Slip Motion of the Chaplygin Sleigh with Piecewise-Smooth Nonholonomic Constraint, ASME J. Comput. Nonlin. Dyn., 2017, vol. 12, no. 3, 031021, 8 pp.CrossRefGoogle Scholar
  21. 21.
    Fedonyuk, V. and Tallapragada, Ph., Sinusoidal Control and Limit Cycle Analysis of the Dissipative Chaplygin Sleigh, Nonlinear Dyn., 2018, vol. 93, no. 2, pp. 835–846.CrossRefzbMATHGoogle Scholar
  22. 22.
    Fermi, E., On the Origin of the Cosmic Radiation, Phys. Rev., 1949, vol. 75, no. 8, pp. 1169–1174.CrossRefzbMATHGoogle Scholar
  23. 23.
    Zaslavsky, G. M. and Chirikov, B. V., Fermi Acceleration Mechanism in the One-Dimensional Case, Dokl. Akad. Nauk SSSR, 1964, vol. 159, no. 2, pp. 306–309 (Russian).Google Scholar
  24. 24.
    Zaslavskii, G. M. and Chirikov, B. V., Stochastic Instability of Non-Linear Oscillations, Sov. Phys. Usp., 1972, vol. 14, no. 5, pp. 549–568; see also: Uspekhi Fiz. Nauk, 1971, vol. 105, no. 9, pp. 3–39.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zaslavsky, G. M., Statistical Irreversibility in Nonlinear Systems, Moscow: Nauka, 1970 (Russian).Google Scholar
  26. 26.
    Handbook of Chaos Control, E. Schöll, H.G. Schuster (Eds.), 2nd ed., Weinheim: Wiley-VCH, 2008.Google Scholar
  27. 27.
    Karapetyan, A.V., On Realizing Nonholonomic Constraints by Viscous Friction Forces and Celtic Stones Stability, J. Appl. Math. Mech., 1981, vol. 45, no. 1, pp. 30–36; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 1, pp. 42–51.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kozlov, V. V., On the Realization of Constraints in Dynamics, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 594–600; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692–698.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 2004.CrossRefzbMATHGoogle Scholar
  30. 30.
    Fufaev, N.A., On the Possibility of Realizing a Nonholonomic Constraint by Means of Viscous Friction Forces, J. Appl. Math. Mech., 1964, vol. 28, no. 3, pp. 630–632; see also: Prikl. Mat. Mekh., 1964, vol. 28, no. 3, pp. 513–515.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lamb, H., Hydrodynamics, 6th ed., Cambridge: Cambridge Univ. Press, 1993.zbMATHGoogle Scholar
  32. 32.
    Ruelle, D., Strange Attractors, Math. Intelligencer, 1980, vol. 2, no. 3, pp. 126–137.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.CrossRefzbMATHGoogle Scholar
  34. 34.
    Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).Google Scholar
  35. 35.
    Sagdeev, R. Z., Usikov, D.A., and Zaslavsky, G.M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Chur: Harwood, 1990.Google Scholar
  36. 36.
    Lichtenberg, A. J. and Lieberman, M.A., Regular and Chaotic Dynamics, 2nd ed., Appl. Math. Sci., vol. 38, New York: Springer, 1992.Google Scholar
  37. 37.
    Reichl, L.E., The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations, 2nd ed., New York: Springer, 2004.CrossRefzbMATHGoogle Scholar
  38. 38.
    Feller, W., An Introduction to Probability Theory and Its Applications: Vol. 1, 3rd ed., New York: Wiley, 1968.zbMATHGoogle Scholar
  39. 39.
    Rytov, S.M., Kravtsov, Yu.A., and Tatarskii, V. I., Principles of Statistical Radiophysics: 1. Elements of Random Process Theory, Berlin: Springer, 1987.CrossRefzbMATHGoogle Scholar
  40. 40.
    Cox, D. R. and Miller, H. D., The Theory of Stochastic Processes, London: Methuen, 1970.Google Scholar
  41. 41.
    Rabinovich, M. I. and Trubetskov, D. I., Oscillations and Waves in Linear and Nonlinear Systems, Dordrecht: Kluver, 1989.CrossRefzbMATHGoogle Scholar
  42. 42.
    Damgov, V., Nonlinear and Parametric Phenomena: Theory and Applications in Radiophysical and Mechanical Systems, Singapore: World Sci., 2004.CrossRefzbMATHGoogle Scholar
  43. 43.
    Champneys, A., Dynamics of Parametric Excitation, in Mathematics of Complexity and Dynamical Systems: Vols. 1–3, New York: Springer, 2012, pp. 183–204.CrossRefGoogle Scholar
  44. 44.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics–Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.Google Scholar
  45. 45.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.Google Scholar
  47. 47.
    Kaplan, J. L. and Yorke, J.A., A Chaotic Behavior of Multi-Dimensional Differential Equations, in Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen, H.-O. Walther (Eds.), Lecture Notes in Math., vol. 730, Berlin: Springer, 1979, pp. 204–227.CrossRefGoogle Scholar
  48. 48.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory, Meccanica, 1980, vol. 15, no. 1, pp. 9–20.CrossRefzbMATHGoogle Scholar
  49. 49.
    Vasil’eva, A.B. and Butusov, V. F., Asymptotic Methods in Singular Perturbation Theory, Moscow: Vysshaja Shkola, 1990 (Russian).Google Scholar
  50. 50.
    Riznichenko, G.Yu., Lectures on Mathematical Models in Biology, Izhevsk: R&C Dynamics, Institute of Computer Science, 2011 (Russian).Google Scholar
  51. 51.
    Cole, J.D., Perturbation Methods in Applied Mathematics, Waltham,Mass.: Blaisdell, 1968.zbMATHGoogle Scholar
  52. 52.
    Brendelev, V. N., On the Realization of Constraints in Nonholonomic Mechanics, J. Appl. Math. Mech., 1981, vol. 45, no. 3, pp. 351–355; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 3, pp. 481–487.MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Sov. Phys. Dokl., 1983, vol. 28, pp. 735–737; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 550–554.zbMATHGoogle Scholar
  54. 54.
    Eldering, J., Realizing Nonholonomic Dynamics As Limit of Friction Forces, Regul. Chaotic Dyn., 2016, vol. 21, no. 4, pp. 390–409.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  3. 3.Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov BranchSaratovRussia

Personalised recommendations