Skip to main content
Log in

Global Bifurcations in Generic One-parameter Families on \(\mathbb{S}^2\)

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper we prove that generic one-parameter families of vector fields on \(\mathbb{S}^2\) in the neighborhood of the fields of classes AH, SN, HC, SC (Andronov–Hopf, saddle-node, homoclinic curve, saddle connection) are structurally stable. We provide a classification of bifurcations in these families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A.A., Leontovich, E.A., Gordon, I. I., and Maier, A.G., Qualitative Theory of Second-Order Dynamic Systems, New York: Wiley, 1973.

    MATH  Google Scholar 

  2. Arnold, V. I., Afrajmovich, V. S., Il’yashenko, Yu. S., and Shil’nikov, L.P., Bifurcation Theory and Catastrophe Theory, Encyclopaedia Math. Sci., vol. 5, Berlin: Springer, 1999.

    Google Scholar 

  3. Bautin, N.N. and Leontovich, E.A., Methods and Techniques of the Qualitative Study of Dynamical Systems on the Plane, Moscow: Nauka, 1990 (Russian).

    MATH  Google Scholar 

  4. Dumortier, F., Roussarie, R., and Rousseau, C., Hilbert’s 16th Problem for Quadratic Vector Fields, J. Differential Equations, 1994, vol. 110, no. 1, pp. 86–133.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fedorov, R. M., Upper Bounds for the Number of Orbital Topological Types of Polynomial Vector Fields on the Plane “Modulo Limit Cycles”, Russian Math. Surveys, 2004, vol. 59, no. 3, pp. 569–570; see also: Uspekhi Mat. Nauk, 2004, vol. 59, no. 3(357), pp. 183–184.

    Article  MathSciNet  MATH  Google Scholar 

  6. Goncharuk, N., Ilyashenko, Yu., and Solodovnikov, N., Global Bifurcations in Generic One-Parameter Families with a Parabolic Cycle on S 2, arXiv:1707.09779 (2017).

    Google Scholar 

  7. Goncharuk, N. and Ilyashenko, Yu., Large Bifurcation Supports, arXiv:1804.04596 (2018).

    Google Scholar 

  8. Ilyashenko, Yu., Towards the General Theory of Global Planar Bifurcations, in Mathematical Sciences with Multidisciplinary Applications, B.Toni (Ed.), Springer Proc. Math. Stat., vol. 157, Cham: Springer, 2016, pp. 269–299.

    Google Scholar 

  9. Ilyashenko, Yu., Kudryashov, Yu., and Schurov, I., Global Bifurcations in the Two-Sphere: A New Perspective, Invent. Math., 2018, vol. 213, no. 2, pp. 461–506.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ilyashenko, Yu. and Solodovnikov, N., Global Bifurcations in Generic One-Parameter Families with a Separatrix Loop on S 2, Mosc. Math. J., 2018, vol. 18, no. 1, pp. 93–115.

    MathSciNet  Google Scholar 

  11. Ilyashenko, Yu. and Li, W., Nonlocal Bifurcations, Math. Surveys Monogr., vol. 66, Providence,R.I.: AMS, 1999.

    Google Scholar 

  12. Malta, I.P. and Palis, J., Families of Vector Fields with Finite Modulus of Stability, in Dynamical Systems and Turbulence (Univ. Warwick, Coventry, 1979/1980), D. A. Rand, L. S.Young (Eds.), Lecture Notes in Math., vol. 898, Berlin: Springer, 1981, pp. 212–229.

    Google Scholar 

  13. MacLane, S. and Adkisson, V. W., Extensions of Homeomorphisms on the Sphere, in Lectures in Topology, Ann Arbor,Mich.: Univ. of Michigan, 1941, pp. 223–236.

    Google Scholar 

  14. Sotomayor, J., Generic One-Parameter Families of Vector Fields on Two-Dimensional Manifolds, Inst. Hautes Etudes Sci. Publ. Math., 1974, no. 43, pp. 5–46.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriia Starichkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starichkova, V. Global Bifurcations in Generic One-parameter Families on \(\mathbb{S}^2\). Regul. Chaot. Dyn. 23, 767–784 (2018). https://doi.org/10.1134/S1560354718060102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718060102

Keywords

MSC2010 numbers

Navigation