Detection of Phase Space Structures of the Cat Map with Lagrangian Descriptors

Abstract

The goal of this paper is to apply Lagrangian Descriptors (LDs), a technique based on Dynamical Systems Theory (DST) to reveal the phase space structures present in the well-known Arnold’s cat map. This discrete dynamical system, which represents a classical example of an Anosov diffeomorphism that is strongly mixing, will provide us with a benchmark model to test the performance of LDs and their capability to detect fixed points, periodic orbits and their stable and unstable manifolds present in chaotic maps. In this work we show, both from a theoretical and a numerical perspective, how LDs reveal the invariant manifolds of the periodic orbits of the cat map. The application of this methodology in this setting clearly illustrates the chaotic behavior of the cat map and highlights some technical numerical difficulties that arise in the identification of its phase space structures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Arnol’d, V. I. and Avez, A., Ergodic Problems of Classical Mechanics, New York: Benjamin, 1968.

    Google Scholar 

  2. 2.

    Craven, G.T. and Hernandez, R., Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces, Phys. Rev. Lett., 2015, vol. 115, no. 14, 148301, 5 pp.

    Google Scholar 

  3. 3.

    Curbelo, J., García-Garrido, V. J., Mechoso, C.R., Mancho, A.M., Wiggins, S., and Niang, C., Insights into the Three-Dimensional Lagrangian Geometry of the Antarctic Polar Vortex, Nonlinear Proc. Geophys., 2017, vol. 24, no. 3, pp. 379–392.

    Article  Google Scholar 

  4. 4.

    García-Garrido, V. J., Ramos, A., Mancho, A.M., Coca, J., and Wiggins, S., A Dynamical Systems Perspective for a Real-Time Response to a Marine Oil Spill, Mar. Pollut. Bull., 2016, vol. 112, nos. 1–2, pp. 201–210.

    Article  Google Scholar 

  5. 5.

    Junginger, A. and Hernandez, R., Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors, J. Phys. Chem. B, 2016, vol. 120, no. 8, pp. 1720–1725.

    Article  Google Scholar 

  6. 6.

    Lopesino, C., Balibrea-Iniesta, F., Wiggins, S., and Mancho, A.M., The Chaotic Saddle in the Lozi Map, Autonomous and Nonautonomous Versions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 13, 1550184, 18 pp.

    Google Scholar 

  7. 7.

    Lopesino, C., Balibrea, F.,Wiggins, S., andMancho, A.M., LagrangianDescriptors for Two Dimensional, Area Preserving, Autonomous and Nonautonomous Maps, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 27, nos. 1–3, pp. 40–51.

    MathSciNet  Google Scholar 

  8. 8.

    Lopesino, C., Balibrea-Iniesta, F., García-Garrido, V. J., Wiggins, S., and Mancho, A.M., A Theoretical Framework for Lagrangian Descriptors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 1, 1730001, 25 pp.

    Google Scholar 

  9. 9.

    Jiménez Madrid, J.A. and Mancho, A.M., Distinguished Trajectories in Time Dependent Vector Fields, Chaos, 2009, vol. 19, no. 1, 013111, 18 pp.

    Google Scholar 

  10. 10.

    Mancho, A.M., Wiggins, S., Curbelo, J., and Mendoza, C., Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems, Commun. Nonlinear Sci. Numer. Simul., 2013, vol. 18, no. 12, pp. 3530–3557.

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Mendoza, C. and Mancho, A.M., Hidden Geometry of Ocean Flows, Phys. Rev. Lett., 2010, vol. 105, no. 3, 038501, 4 pp.

    Google Scholar 

  12. 12.

    Ramos, A.G., García-Garrido, V. J., Mancho, A.M., Wiggins, S., Coca, J., Glenn, S., Schofield, O., Kohut, J., Aragon, D., Kerfoot, J., Haskins, T., Miles, T., Haldeman, C., Strandskov, N., Allsup, B., Jones, C., and Shapiro, J., Lagrangian Coherent Structure Assisted Path Planning for Transoceanic Autonomous Underwater Vehicle Missions, Sci. Rep., 2018, vol. 8, 4575, 9 pp.

    Google Scholar 

  13. 13.

    Chaos Detection and Predictability, Ch.H. Stokos, G. A. Gottwald, J.Laskar (Eds.), Lect. Notes Phys., vol. 915, Heidelberg: Springer, 2016.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Víctor J. García-Garrido.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Garrido, V.J., Balibrea-Iniesta, F., Wiggins, S. et al. Detection of Phase Space Structures of the Cat Map with Lagrangian Descriptors. Regul. Chaot. Dyn. 23, 751–766 (2018). https://doi.org/10.1134/S1560354718060096

Download citation

Keywords

  • dynamical systems
  • maps
  • Lagrangian descriptors
  • chaotic sets
  • stable and unstable manifolds
  • mixing

MSC2010 numbers

  • 37XX
  • 37D10
  • 37N10
  • 37Mxx
  • 70K43