Skip to main content

Moser’s Quadratic, Symplectic Map

Abstract

In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none.

The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.

This is a preview of subscription content, access via your institution.

References

  1. Moser, J., On Quadratic Symplectic Mappings, Math. Z., 1994, vol. 216, no. 3, pp. 417–430.

    MathSciNet  Article  MATH  Google Scholar 

  2. Hénon, M., A Two-Dimensional Mapping with a Strange Attractor, Commun. Math. Phys., 1976, vol. 50, no. 1, pp. 69–77.

    MathSciNet  Article  MATH  Google Scholar 

  3. Bäcker, A. and Meiss, J. D., Elliptic Bubbles in Moser’s 4D Quadratic Map: The Quadfurcation, arXiv:1807.06074 (2018).

    Google Scholar 

  4. Wisdom, J. and Holman, M., Symplectic Maps for the N-Body Problem, Astron. J., 1991, vol. 102, no. 4, pp. 1528–1538.

    Article  Google Scholar 

  5. Murray, N. and Holman, M., The Role of Chaotic Resonances in the Solar System, Nature, 2001, vol. 410, no. 6830, pp. 773–779.

    Article  Google Scholar 

  6. Cincotta, P.M., Arnold Diffusion: An Overview through Dynamical Astronomy, New Astron. Rev., 2002, vol. 46, no. 1, pp. 13–39.

    Article  Google Scholar 

  7. Contopoulos, G. and Harsoula, M., 3D Chaotic Diffusion in Barred Spiral Galaxies, Mon. Not. R. Astron. Soc., 2013, vol. 436, no. 2, pp. 1201–1214.

    Article  Google Scholar 

  8. Páez, R. I. and Efthymiopoulos, Ch., Trojan Resonant Dynamics, Stability, and Chaotic Diffusion, for Parameters Relevant to Exoplanetary Systems, Celest. Mech. Dyn. Astr., 2015, vol. 121, no. 2, pp. 139–170.

    MATH  Google Scholar 

  9. Daquin, J., Rosengren, A. J., Alessi, E.M., Deleflie, F., Valsecchi, G.B., and Rossi, A., The Dynamical Structure of the MEO Region: Long-Term Stability, Chaos, and Transport, Celest. Mech. Dyn. Astr., 2016, vol. 124, no. 4, pp. 335–366.

    MathSciNet  Article  MATH  Google Scholar 

  10. Warnock, R. L. and Ruth, R. D., Long-Term Bounds on Nonlinear Hamiltonian Motion, Physica D, 1992, vol. 56, nos. 2–3, pp. 188–215.

    MathSciNet  Article  MATH  Google Scholar 

  11. Dumas, H. S. and Laskar, J., Global Dynamics and Long-Time Stability in Hamiltonian Systems via Numerical Frequency Analysis, Phys. Rev. Lett., 1993, vol. 70, no. 20, pp. 2975–2979.

    Article  Google Scholar 

  12. Robin, D., Steier, C., Laskar, J., and Nadolski, L., Global Dynamics of the Advanced Light Source Revealed through Experimental Frequency Map Analysis, Phys. Rev. Lett., 2000, vol. 85, no. 3, pp. 558–561.

    Article  Google Scholar 

  13. Papaphilippou, Y., Detecting Chaos in Particle Accelerators through the Frequency Map Analysis Method, Chaos, 2014, vol. 24, no. 2, 024412, 29 pp.

    Google Scholar 

  14. Howard, J.E., Lichtenberg, A. J., Lieberman,M.A., and Cohen, R.H., Four-DimensionalMapping Model for Two-Frequency Electron Cyclotron Resonance Heating, Physica D, 1986, vol. 20, nos. 2–3, pp. 259–284.

    Google Scholar 

  15. Gaspard, P. and Rice, S.A., Hamiltonian Mapping Models of Molecular Fragmentation, J. Phys. Chem., 1989, vol. 93, no. 19, pp. 6947–6957.

    Article  Google Scholar 

  16. Gillilan, R.E. and Ezra, G. S., Transport and Turnstiles in Multidimensional Hamiltonian Mappings for Unimolecular Fragmentation: Application to van der Waals Predissociation, J. Chem. Phys., 1991, vol. 94, no. 4, pp. 2648–2668.

    Article  Google Scholar 

  17. Geometric Structures of Phase Space in Multidimensional Chaos: Applications to Chemical Reaction Dynamics in Complex Systems: In 2 Vols., M.Toda, T.Komatsuzaki, T.Konishi, R. S. Berry, S.A.Rice (Eds.), Adv. Chem. Phys., vol. 130, Hoboken,N.J.: Wiley, 2005.

    Google Scholar 

  18. Gekle, S., Main, J., Bartsch, Th., and Uzer, T., Extracting Multidimensional Phase Space Topology from Periodic Orbits, Phys. Rev. Lett., 2006, vol. 97, no. 10, 104101, 4 pp.

    Google Scholar 

  19. Waalkens, H., Schubert, R., and Wiggins, S., Wigner’s Dynamical Transition State Theory in Phase Space: Classical and Quantum, Nonlinearity, 2008, vol. 21, no. 1, R1–R118.

    Google Scholar 

  20. Manikandan, P. and Keshavamurthy, S., Dynamical Traps Lead to the Slowing Down of Intramolecular Vibrational Energy Flow, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 40, pp. 14354–14359.

    Article  Google Scholar 

  21. Hénon, M., Numerical Study of Quadratic Area-Preserving Mappings, Quart. Appl. Math., 1969, vol. 27, pp. 291–312.

    MathSciNet  Article  MATH  Google Scholar 

  22. Devaney, R. and Nitecki, Z., Shift Automorphisms in the Hénon Mapping, Commun. Math. Phys., 1979, vol. 67, pp. 137–146.

    Article  MATH  Google Scholar 

  23. Broucke, R., Stability of Periodic Orbits in the Elliptic, Restricted Three-Body Problem, AIAA J., 1969, vol. 7, no. 6, pp. 1003–1009.

    MATH  Google Scholar 

  24. Howard, J.E. and MacKay, R. S., Linear Stability of Symplectic Maps, J. Math. Phys., 1987, vol. 28, no. 5, pp. 1036–1051.

    MathSciNet  Article  MATH  Google Scholar 

  25. Broer, H.W. and Sevryuk, M.B., KAM Theory: Quasi-Periodicity in Dynamical Systems, in Handbook of Dynamical Systems: Vol. 3, H.W. Broer, B.Hasselblatt, F.Takens (Eds.), Amsterdam: Elsevier, 2010, pp. 249–344.

    Google Scholar 

  26. Moser, J., On Invariant Curves of Area-Preserving Mappings of an Annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962, vol. 1962, pp. 1–20.

    MathSciNet  MATH  Google Scholar 

  27. Delshams, A. and Gutiérrez, P., Estimates on Invariant Tori near an Elliptic Equilibrium Point of a Hamiltonian System, J. Differential Equations, 1996, vol. 131, no. 2, pp. 277–303.

    MathSciNet  Article  MATH  Google Scholar 

  28. Eliasson, L. H., Fayad, B., and Krikorian, R., KAM-Tori near an Analytic Elliptic Fixed Point, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 801–831.

    MathSciNet  Article  MATH  Google Scholar 

  29. Arnold, V. I., On the Nonstability of Dynamical Systems with Many Degrees of Freedom, Soviet Math. Dokl., 1964, vol. 5, no. 3, pp. 581–585; see also: Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 1, pp. 9–12.

    Google Scholar 

  30. Lochak, P., Arnold Diffusion: A Compendium of Remarks and Questions, in Hamiltonian Systems with Three or More Degrees of Freedom (S’Agaró, 1995), C. Simó (Ed.), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 533, Dordrecht: Kluwer, 1999, pp. 168–183.

    Google Scholar 

  31. Delshams, A. and Huguet, G., A Geometric Mechanism of Diffusion: Rigorous Verification in a priori Unstable Hamiltonian Systems, J. Differential Equations, 2011, vol. 250, no. 5, pp. 2601–2623.

    MathSciNet  Article  MATH  Google Scholar 

  32. Dumas, H. S., The KAM Story: A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorov–Arnold–Moser Theory, Hackensack,N.J.: World Sci., 2014.

    Book  MATH  Google Scholar 

  33. Richter, M., Lange, S., Bäcker, A., and Ketzmerick, R., Visualization and Comparison of Classical Structures and Quantum States of Four-Dimensional Maps, Phys. Rev. E, 2014, vol. 89, no. 2, 022902, 12 pp.

    Google Scholar 

  34. Lange, S., Richter, M., Onken, F., Bäcker, A., and Ketzmerick, R., Global Structure of Regular Tori in a Generic 4D Symplectic Map, Chaos, 2014, vol. 24, no. 2, 024409, 11 pp.

    Google Scholar 

  35. Onken, F., Lange, S., Ketzmerick, R., and Bäcker, A., Bifurcations of Families of 1D-Tori in 4D Symplectic Maps, Chaos, 2016, vol. 26, no. 6, 063124, 13 pp.

    Google Scholar 

  36. Firmbach, M., Lange, S., Ketzmerick, R., and Bäcker, A., Three-Dimensional Billiards: Visualization of Regular Structures and Trapping of Chaotic Trajectories, Phys. Rev. E, 2018, vol. 98, no. 2, 022214, 18 pp.

    Google Scholar 

  37. Izrailev, F.M. and Chirikov, B.V., Some Numerical Experiments with a Nonlinear Mapping: Stochastic Component, in Proc. Colloques Internationaux du CNRS (Toulouse, 1973), No. 229, pp. 409–428.

    Google Scholar 

  38. Kook, H.-T. and Meiss, J. D., Diffusion in Symplectic Maps, Phys. Rev. A (3), 1990, vol. 41, no. 8, pp. 4143–4150.

    MathSciNet  Article  MATH  Google Scholar 

  39. Froeschle, C., On the Number of Isolating Integrals in Systems with Three Degrees of Freedom, Astrophys. Space Sci., 1971, vol. 14, no. 1, pp. 110–117.

    Article  Google Scholar 

  40. Suris, Yu. B., Integrable Mappings of the Standard Type, Funct. Anal. Appl., 1989, vol. 23, no. 1, pp. 74–76; see also: Funktsional. Anal. i Prilozhen., 1989, vol. 3, no. 1, pp. 84–85.

    MathSciNet  Article  MATH  Google Scholar 

  41. McLachlan, R. I., Integrable Four-Dimensional Symplectic Maps of Standard Type, Phys. Lett. A, 1993, vol. 177, no. 3, pp. 211–214.

    MathSciNet  Article  Google Scholar 

  42. Bountis, T., Segur, H., and Vivaldi, F., Integrable Hamiltonian Systems and the Painlevé Property, Phys. Rev. A (3), 1982, vol. 25, no. 3, pp. 1257–1264.

    MathSciNet  Article  Google Scholar 

  43. Ramachandran, P. and Varoquaux, G., Mayavi: 3D Visualization of Scientific Data, Comput. Sci. Eng., 2011, vol. 13, no. 2, pp. 40–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Bäcker.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bäcker, A., Meiss, J.D. Moser’s Quadratic, Symplectic Map. Regul. Chaot. Dyn. 23, 654–664 (2018). https://doi.org/10.1134/S1560354718060023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718060023

Keywords

  • Hénon map
  • symplectic maps
  • saddle-center bifurcation
  • Krein bifurcation
  • invariant tori

MSC2010 numbers

  • 37J40
  • 70H08
  • 34C28
  • 37C05