Skip to main content
Log in

Stationary Configurations of Point Vortices on a Cylinder

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this paper we study the problem of constructing and classifying stationary equilibria of point vortices on a cylindrical surface. Introducing polynomials with roots at vortex positions, we derive an ordinary differential equation satisfied by the polynomials. We prove that this equation can be used to find any stationary configuration. The multivortex systems containing point vortices with circulation Γ1 and Γ22 = −μΓ1) are considered in detail. All stationary configurations with the number of point vortices less than five are constructed. Several theorems on existence of polynomial solutions of the ordinary differential equation under consideration are proved. The values of the parameters of the mathematical model for which there exists an infinite number of nonequivalent vortex configurations on a cylindrical surface are found. New point vortex configurations are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borisov, A.V. and Mamaev, I. S., Mathematical Methods in the Dynamics of Vortex Structures, Izhevsk: R&C Dynamics, Institute of Computer Science, 2005 (Russian).

    MATH  Google Scholar 

  2. Kadtke, H.B. and Campbell, L. J., Method for Finding Stationary States of Point Vortices, Phys. Rev. A, 1987, vol. 36, no. 1, pp. 4360–4370.

    Article  Google Scholar 

  3. Aref, H., Relative Equilibria of Point Vortices and the Fundamental Theorem of Algebra, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2011, vol. 467, no. 2132, pp. 2168–2184.

    Article  MathSciNet  MATH  Google Scholar 

  4. Tkachenko, V.K., Studying the Violations of the Superfluidity of Helium in Broad Capillaries under the Influence of Heat Flow, Thesis PhD, Moscow: Institute for Physical Problems, 1964.

    Google Scholar 

  5. Aref, H., Vortices and Polynomials, Fluid Dynam. Res., 2007, vol. 39, nos. 1–3, pp. 5–23.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aref, H., Newton, P.K., Stremler, M.A., Tokieda, T., and Vainchtein, D., Vortex Crystals, in Advances in Applied Mechanics: Vol. 39, E. van derGiessen, H. Aref (Eds.), San Diego: Acad. Press, 2003, pp. 1–79.

    Google Scholar 

  7. O’Neil, K. A., Symmetric Configurations of Vortices, Phys. Lett. A, 1987, vol. 124, no. 9, pp. 503–507.

    Article  MathSciNet  Google Scholar 

  8. O’Neil, K. A., Relative Equilibrium and Collapse Configurations of Four Point Vortices, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 117–126.

    Article  MathSciNet  MATH  Google Scholar 

  9. O’Neil, K. A., Clustered Equilibria of Point Vortices, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 555–561.

    Article  MathSciNet  MATH  Google Scholar 

  10. O’Neil, K. A., Minimal Polynomial Systems for Point Vortex Equilibria, Phys. D, 2006, vol. 219, no. 1, pp. 69–79.

    Article  MathSciNet  MATH  Google Scholar 

  11. Demina, M.V. and Kudryashov, N.A., Point Vortices and Polynomials of the Sawada–Kotera and Kaup–Kupershmidt Equations, Regul. Chaotic Dyn., 2011, vol. 16, no. 6, pp. 562–576.

    Article  MathSciNet  MATH  Google Scholar 

  12. Demina, M.V. and Kudryashov, N.A., Vortices and Polynomials: Non-Uniqueness of the Adler–Moser Polynomials for the Tkachenko Equation, J. Phys. A, 2012, vol. 45, no. 19, 195205, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  13. Demina, M.V. and Kudryashov, N.A., Point Vortices and Classical Orthogonal Polynomials, Regul. Chaotic Dyn., 2012, vol. 17, no. 5, pp. 371–384.

    Article  MathSciNet  MATH  Google Scholar 

  14. O’Neil, K. A., Continuous Parametric Families of Stationary and Translating Periodic Point Vortex Configurations, J. Fluid Mech., 2007, vol. 591, pp. 393–411.

    MathSciNet  MATH  Google Scholar 

  15. O’Neil, K. A., Singular Continuation of Point Vortex Relative Equilibria on the Plane and Sphere, Nonlinearity, 2013, vol. 26, no. 3, pp. 777–804.

    Article  MathSciNet  MATH  Google Scholar 

  16. O’Neil, K. A., Relative Equilibrium and Collapse Configurations of Heterogeneous Vortex Triple Rings, Phys. D, 2007, vol. 236, no. 2, pp. 123–130.

    Article  MathSciNet  MATH  Google Scholar 

  17. O’Neil, K. A., Stationary States of Identical Point Vortices and Vortex Foam on the Sphere, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2013, vol. 469, no. 2150, 20120622, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  18. Aref, H. and Brøns, M., On Stagnation Points and Streamline Topology in Vortex Flows, J. Fluid Mech., 1998, vol. 370, pp. 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  19. Smirnov, V. I., Course of Higher Mathematics: Vol. 3, Part 2. Textbook for High Schools, St. Peterburg: BHV, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariya V. Safonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonova, D.V., Demina, M.V. & Kudryashov, N.A. Stationary Configurations of Point Vortices on a Cylinder. Regul. Chaot. Dyn. 23, 569–579 (2018). https://doi.org/10.1134/S1560354718050064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718050064

Keywords

MSC2010 numbers

Navigation