Skip to main content
Log in

Finite-time Collapse of Three Point Vortices in the Plane

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We investigate the finite-time collapse of three point vortices in the plane utilizing the geometric formulation of three-vortexmotion from Krishnamurthy, Aref and Stremler (2018) Phys. Rev. Fluids 3, 024702. In this approach, the vortex system is described in terms of the interior angles of the triangle joining the vortices, the circle that circumscribes that triangle, and the orientation of the triangle. Symmetries in the governing geometric equations of motion for the general three-vortex problem allow us to consider a reduced parameter space in the relative vortex strengths. The well-known conditions for three-vortex collapse are reproduced in this formulation, and we show that these conditions are necessary and sufficient for the vortex motion to consist of collapsing or expanding self-similar motion. The geometric formulation enables a new perspective on the details of this motion. Relationships are determined between the interior angles of the triangle, the vortex strength ratios, the (finite) system energy, the time of collapse, and the distance traveled by the configuration prior to collapse. Several illustrative examples of both collapsing and expanding motion are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aref, H., Motion of Three Vortices, Phys. Fluids, 1979, vol. 22, pp. 393–400.

    Article  MATH  Google Scholar 

  2. Aref, H., Integrable, Chaotic, and Turbulent Vortex Motion in Two-Dimensional Flows, Annu. Rev. Fluid Mech., 1983, vol. 15, pp. 345–389.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aref, H., Addendum: “Three-Vortex Motion with Zero Total Circulation” [Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 473–494] by N.Rott, Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 495–500.

    Article  MathSciNet  Google Scholar 

  4. Aref, H., A Transformation of the Point Vortex Equations, Phys. Fluids, 2002, vol. 14, pp. 2395–2401.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aref, H., Self-Similar Motion of Three Point Vortices, Phys. Fluids, 2010, vol. 22, no. 5, 057104, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aref, H., Rott, N., and Thomann, H., Gröbli’s Solution of the Three-Vortex Problem, Annu. Rev. Fluid Mech., 1992, vol. 24, pp. 1–20.

    Article  MATH  Google Scholar 

  7. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 2000.

    Book  Google Scholar 

  8. Borisov, A. V. and Pavlov, A.E., Dynamics and Statics of Vortices on a Plane and a Sphere: 1, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 28–38.

    Article  MathSciNet  MATH  Google Scholar 

  9. Coxeter, H. S.M., Introduction to Geometry, 2nd ed., New York: Wiley, 1989.

    Google Scholar 

  10. Gotoda, T. and Sakajo, T., Distributional Enstrophy Dissipation via the Collapse of Three Point Vortices, J. Nonlinear Sci., 2016, vol. 26, no. 5, pp. 1525–1570.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gotoda, T. and Sakajo, T., Universality of the Anomalous Enstrophy Dissipation at the Collapse of Three Point Vortices on Euler–Poincaré Models, SIAM J. Appl. Math., 2018, vol. 78, no. 4, pp. 2105–2128.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gröbli, W., Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Zürich: Zürcher und Furrer, 86 pp.; see also: Vierteljahresschr. Naturforsch. Ges. Zürich, 1877, vol. 22, pp. 37–81, 129–165.

    Google Scholar 

  13. Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.

    Article  MathSciNet  Google Scholar 

  14. Kimura, Y., Similarity Solution of Two-Dimensional Point Vortices, J. Phys. Soc. Japan, 1987, vol. 56, no. 6, pp. 2024–2030.

    Article  MathSciNet  Google Scholar 

  15. Koiller, J., Pinto de Carvalho, S., Rodrigues da Silva, R., and Gonçalves de Oliveira, L.C., On Aref’s Vortex Motions with a Symmetry Center, Phys. D, 1985, vol. 16, no. 1, pp. 27–61.

    Article  MathSciNet  MATH  Google Scholar 

  16. Krishnamurthy, V. S., Aref, H., and Stremler, M. A., Evolving Geometry of a Vortex Triangle, Phys. Rev. Fluids, 2018, vol. 3, no. 2, 024702, 17 pp.

    Article  Google Scholar 

  17. Kudela, H., Self-Similar Collapse of n Point Vortices, J. Nonlinear Sci., 2014, vol. 24, no. 5, pp. 913–933.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lamb, H., Hydrodynamics, 6th ed., New York: Dover, 1945.

    MATH  Google Scholar 

  19. Leoncini, X., Kuznetsov, L., and Zaslavsky, G. M., Motion of Three Vortices near Collapse, Phys. Fluids, 2000, vol. 12, no. 8, pp. 1911–1927.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewkovicz, M., On the Existence of Finite Collapsing Systems of Plane Vortices, J. Theor. Appl. Mech., 2014, vol. 52, no. 4, pp. 1047–1059.

    Article  Google Scholar 

  21. Newton, P.K., The N-Vortex Problem: Analytical Techniques, Appl. Math. Sci., vol. 145, New York: Springer, 2001.

    Book  MATH  Google Scholar 

  22. Novikov, E.A., Dynamics and Statistics of a System of Vortices, JETP, 1975, vol. 41, no. 5, pp. 937–943; see also: Zh. Èksper. Teoret. Fiz., 1975, vol. 68, no. 5, pp. 1868–1882.

    Google Scholar 

  23. Novikov, E.A. and Sedov, Yu. B., Vortex Collapse, JETP, 1979, vol. 50, no. 2, pp. 297–301; see also: Zh. Èksper. Teoret. Fiz., 1979, vol. 77, no. 2, pp. 588–597.

    Google Scholar 

  24. O’Neil, K. A., Collapse of Point Vortex Lattices, Phys. D, 1989, vol. 37, nos. 1–3, pp. 531–538.

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Neil, K. A., Relative Equilibrium and Collapse Configurations of Four Point Vortices, Regul. Chaotic Dyn., 2007, vol. 12, no. 2, pp. 117–126.

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Neil, K. A., Relative Equilibrium and Collapse Configurations of Heterogeneous Vortex Triple Rings, Phys. D, 2007, vol. 236, no. 2, pp. 123–130.

    Article  MathSciNet  MATH  Google Scholar 

  27. Rott, N., Three-Vortex Motion with Zero Total Circulation, Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 473–494. See also [3].

    Article  MathSciNet  MATH  Google Scholar 

  28. Saffman, P.G., Vortex Dynamics, Cambridge: Cambridge Univ. Press, 1993.

    Book  MATH  Google Scholar 

  29. Sakajo, T., Instantaneous Energy and Enstrophy Variations in Euler-Alpha Point Vortices via Triple Collapse, J. Fluid Mech., 2012, vol. 702, pp. 188–214.

    Article  MathSciNet  MATH  Google Scholar 

  30. Schaeffer, A.C., Existence Theorem for the Flow of an Ideal Incompressible Fluid in Two Dimensions, Trans. Amer. Math. Soc., 1937, vol. 42, no. 3, pp. 497–513.

    Article  MathSciNet  MATH  Google Scholar 

  31. Synge, J. L., On the Motion of Three Vortices, Canadian J. Math., 1949, vol. 1, pp. 257–270.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tavantzis, J. and Ting, L., The Dynamics of Three Vortices Revisited, Phys. Fluids, 1988, vol. 31, no. 6, pp. 1392–1409.

    Article  MathSciNet  MATH  Google Scholar 

  33. Vosbeek, P.W.C., van Geffen, J.H.G.M., Meleshko, V.V., and van Heijst, G. J.F., Collapse Interactions of Finite-Sized Two-Dimensional Vortices, Phys. Fluids, 1997, vol. 9, no. 11, pp. 3315–3322.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas S. Krishnamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, V.S., Stremler, M.A. Finite-time Collapse of Three Point Vortices in the Plane. Regul. Chaot. Dyn. 23, 530–550 (2018). https://doi.org/10.1134/S1560354718050040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718050040

Keywords

MSC2010 numbers

Navigation