Regular and Chaotic Dynamics

, Volume 23, Issue 4, pp 458–470 | Cite as

Hyperbolic Chaos in Systems Based on FitzHugh – Nagumo Model Neurons

  • Sergey P. KuznetsovEmail author
  • Yuliya V. Sedova


In the present paper we consider and study numerically two systems based on model FitzHugh–Nagumo neurons, where in the presence of periodic modulation of parameters it is possible to implement chaotic dynamics on the attractor in the form of a Smale–Williams solenoid in the stroboscopic Poincaré map. In particular, hyperbolic chaos characterized by structural stability occurs in a single neuron supplemented by a time-delay feedback loop with a quadratic nonlinear element.


hyperbolic chaos Smale–Williams solenoid FitzHugh–Nagumo neuron time-delay system 

MSC2010 numbers

37D05 37D20 37D45 37M25 82C32 92B20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FitzHugh, R., Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophys. J., 1961, vol. 1, no. 6, pp. 445–466CrossRefGoogle Scholar
  2. 2.
    Nagumo, J., Arimoto, S., and Yoshizawa, S., An Active Pulse Transmission Line Simulating Nerve Axon, Proc. of the IRE, 1962, vol. 50, no. 10, pp. 2061–2070CrossRefGoogle Scholar
  3. 3.
    Andronov, A. A., Vitt, A. A., and Khaikin, S.E., Theory of Oscillators, Oxford: Pergamon, 1966.zbMATHGoogle Scholar
  4. 4.
    Gaponov-Grekhov, A. V. and Rabinovich, M. I., L. I. Mandel’shtam and the Modern Theory of Nonlinear Oscillations and Waves, Physics–Uspekhi, 1979, vol. 22, no. 8, pp. 590–614 see also: Uspekhi Fiz. Nauk, 1979, vol. 128, no. 8, pp. 579–624Google Scholar
  5. 5.
    Rabinovich, M. I. and Trubetskov, D. I., Oscillations and Waves in Linear and Nonlinear Systems, Dordrecht: Kluver, 1989.Google Scholar
  6. 6.
    Landa, P. S., Nonlinear Oscillations and Waves in Dynamical Systems, Math. Appl., vol. 360, Dordrecht: Springer, 2013.zbMATHGoogle Scholar
  7. 7.
    Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747–817MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dynamical Systems 9: Dynamical Systems with Hyperbolic Behaviour, D. V. Anosov (Ed.), Encyclopaedia Math. Sci., vol. 66, Berlin: Springer, 1995.Google Scholar
  9. 9.
    Shilnikov, L., Mathematical Problems of Nonlinear Dynamics: A Tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1997, vol. 7, no. 9, pp. 1953–2001MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Andronov, A. and Pontryagin, L., Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 1937, vol. 14, no. 5, pp. 247–250(Russian).zbMATHGoogle Scholar
  11. 11.
    Kuznetsov, S. P., Dynamical Chaos and Uniformly Hyperbolic Attractors: From Mathematics to Physics, Phys. Uspekhi, 2011, vol. 54, no. 2, pp. 119–144 see also: Uspekhi Fiz. Nauk, 2011, vol. 181, no. 2, pp. 121–149.CrossRefGoogle Scholar
  12. 12.
    Kuznetsov, S. P., Hyperbolic Chaos: A Physicist’s View, Berlin: Springer, 2012.CrossRefzbMATHGoogle Scholar
  13. 13.
    Jalnine, A.Yu., Hyperbolic and Non-Hyperbolic Chaos in a Pair of Coupled Alternately Excited FitzHugh–Nagumo Systems, Commun. Nonlinear Sci. Numer. Simul., 2015, vol. 23, nos. 1–3, pp. 202–208.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jalnine, A.Yu., From Quasiharmonic Oscillations to Neural Spikes and Bursts: A Variety of Hyperbolic Chaotic Regimes Based on Smale–Williams Attractor, Rus. J. Nonlin. Dyn., 2016, vol. 12, pp. 53–73(Russian).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kuznetsov, S. P. and Ponomarenko, V. I., Realization of a Strange Attractor of the Smale–Williams Type in a Radiotechnical Delay-Feedback Oscillator, Tech. Phys. Lett., 2008, vol. 34, no. 9, pp. 771–773 see also: Pisma Zh. Tekh. Fiz., 2008, vol. 34, no. 18, pp. 1–8CrossRefGoogle Scholar
  16. 16.
    Kuznetsov, S. P. and Pikovsky, A. S., Hyperbolic Chaos in the Phase Dynamics of a Q-Switched Oscillator with Delayed Nonlinear Feedbacks, Europhys. Lett., 2008, vol. 84, no. 1, 10013, 5 pp.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Baranov, S. V., Kuznetsov, S. P., and Ponomarenko, V. I., Chaos in the Phase Dynamics of Q-Switched van derPol Oscillator with Additional Delayed Feedback Loop, Izvestiya VUZ, Applied Nonlinear Dynamics, 2010, vol. 18, no. 1, pp. 11–23(Russian).zbMATHGoogle Scholar
  18. 18.
    Kuznetsov, A. S. and Kuznetsov, S. P., Parametric Generation of Robust Chaos with Time-Delayed Feedback and Modulated Pump Source, Commun. Nonlinear Sci. Numer. Simul., 2013, vol. 18, no. 3, pp. 728–734MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Arzhanukhina, D. S. and Kuznetsov, S. P., Robust Chaos in Autonomous Time-Delay System, Izvestiya VUZ, Applied Nonlinear Dynamics, 2014, vol. 22, no. 2, pp. 36–49(Russian).zbMATHGoogle Scholar
  20. 20.
    Kuznetsov, S.P. and Pikovsky, A., Attractor of Smale–Williams Type in an Autonomous Time-Delay System, arXiv:1011.5972 (2010).Google Scholar
  21. 21.
    Moon, F. C. and Holmes, W. T., Double Poincaré Sections of a Quasi-Periodically Forced, Chaotic Attractor, Phys. Lett. A, 1985, vol. 111, no. 4, pp. 157–160CrossRefGoogle Scholar
  22. 22.
    Kuznetsov, A. P., Kuznetsov, S. P., Pikovsky, A. S., and Turukina, L. V., Chaotic Dynamics in the Systems of Coupling Nonautonomous Oscillators with Resonance and Nonresonance Communicator of the Signal, Izvestiya VUZ, Applied Nonlinear Dynamics, 2007, vol. 15, no. 6, pp. 75–85(Russian).Google Scholar
  23. 23.
    Kaplan, J. L. and Yorke, J.A., A Chaotic Behavior of Multi-Dimensional Differential Equations, in Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen, H.-O. Walther (Eds.), Lecture Notes in Math., vol. 730, Berlin: Springer, 1979, pp. 204–227.CrossRefGoogle Scholar
  24. 24.
    Farmer, J. D., Chaotic Attractors of an Infinite-Dimensional Dynamical System, Phys. D, 1981/82, vol. 4, no. 3, pp. 366–393.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).Google Scholar
  26. 26.
    Isaeva, O. B., Kuznetsov, S.P., Sataev, I.R., Savin, D.V., and Seleznev, E.P., Hyperbolic Chaos and Other Phenomena of Complex Dynamics Depending on Parameters in a Nonautonomous System of Two Alternately Activated Oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, vol. 25, no. 12, 1530033, 15 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Glass, L., Guevara, M.R., Shrier, A., and Perez, R., Bifurcation and Chaos in a Periodically Stimulated Cardiac Oscillator, Phys. D, 1983, vol. 7, nos. 1–3, pp. 89–101.CrossRefGoogle Scholar
  28. 28.
    Argyris, J.H., Faust, G., Haase, M., and Friedrich, R., An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged Second Edition, Berlin: Springer, 2015.CrossRefzbMATHGoogle Scholar
  29. 29.
    Gallas, J. A. C., Dissecting Shrimps: Results for Some One-Dimensional Physical Models, Phys. A, 1994, vol. 202, nos. 1–2, pp. 196–223.CrossRefGoogle Scholar
  30. 30.
    Bellman, R. E. and Cooke, K. L., Differential-Difference Equations, New York: Acad. Press, 2012.zbMATHGoogle Scholar
  31. 31.
    El’sgol’ts, L. E. and Norkin, S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, New York: Acad. Press, 2012.zbMATHGoogle Scholar
  32. 32.
    Balyakin, A. A. and Ryskin, N. M., Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback, Izvestiya VUZ, Applied Nonlinear Dynamics, 2007, vol. 15, no. 6, pp. 3–21(Russian).zbMATHGoogle Scholar
  33. 33.
    Lai, Y.-Ch., Grebogi, C., Yorke, J. A., and Kan, I., How Often Are Chaotic Saddles Nonhyperbolic?, Nonlinearity, 1993, vol. 6, no. 5, pp. 779–797MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Anishchenko, V. S., Kopeikin, A. S., Kurths, J., Vadivasova, T.E., Strelkova, G. I., Studying Hyperbolicity in Chaotic Systems, Phys. Lett. A, 2000, vol. 270, no. 6, pp. 301–307MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kuptsov, P. V., Fast Numerical Test of Hyperbolic Chaos, Phys. Rev. E, 2012, vol. 85, no. 1, 015203, 4 pp.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Kuptsov, P. V. and Kuznetsov, S. P., Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems, Phys. Rev. E, 2016, vol. 94, no. 1, 010201(R), 7 pp.CrossRefGoogle Scholar
  37. 37.
    Kuptsov, P. V. and Kuznetsov, S. P., Numerical Test for Hyperbolicity in Chaotic Systems with Multiple Time Delays, Commun. Nonlinear Sci. Numer. Simul., 2018, vol. 56, pp. 227–239MathSciNetCrossRefGoogle Scholar
  38. 38.
    Dmitriev, A. S., Efremova, E. V., Maksimov, N. A., and Panas, A. I., Generation of Chaos, Moscow: Tekhnosfera, 2012 (Russian).Google Scholar
  39. 39.
    Koronovskii, A. A., Moskalenko, O. I., and Hramov, A. E., On the Use of Chaotic Synchronization for Secure Communication, Physics–Uspekhi, 2009, vol. 52, no. 12, pp. 1213–1238 see also: Uspekhi Fiz. Nauk, 2009, vol. 179, no. 12, pp. 1281–1310Google Scholar
  40. 40.
    Lukin, K. A., Noise Radar Technology, Telecommunications and Radio Engineering, 2001, vol. 55, no. 12, pp. 8–16CrossRefGoogle Scholar
  41. 41.
    Baptista, M. S., Cryptography with Chaos, Phys. Lett. A, 1998, vol. 240, nos. 1–2, pp. 50–54.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Chaos-Based Cryptography: Theory, Algorithms and Applications, L. Kocarev, Sh. Lian (Eds.), Studies in Computational Intelligence, vol. 354, Berlin: Springer, 2011.Google Scholar
  43. 43.
    Stojanovski, T. and Kocarev, L., Chaos-Based Random Number Generators: 1. Analysis, IEEE Trans. Circuits Systems 1 Fund. Theory Appl., 2001, vol. 48, no. 3, pp. 281–288MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Stojanovski, T. and Kocarev, L., Chaos-Based Random Number Generators: 2. Practical Realization, IEEE Trans. Circuits Systems 1 Fund. Theory Appl., 2001, vol. 48, no. 3, pp. 382–385MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov BranchSaratovRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations