Regular and Chaotic Dynamics

, Volume 23, Issue 2, pp 178–192 | Cite as

Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint

  • Sergey P. KuznetsovEmail author


The main goal of the article is to suggest a two-dimensional map that could play the role of a generalized model similar to the standard Chirikov–Taylor mapping, but appropriate for energy-conserving nonholonomic dynamics. In this connection, we consider a Chaplygin sleigh on a plane, supposing that the nonholonomic constraint switches periodically in such a way that it is located alternately at each of three legs supporting the sleigh. We assume that at the initiation of the constraint the respective element (“knife edge”) is directed along the local velocity vector and becomes instantly fixed relative to the sleigh till the next switch. Differential equations of the mathematical model are formulated and an analytical derivation of mapping for the state evolution on the switching period is provided. The dynamics take place with conservation of the mechanical energy, which plays the role of one of the parameters responsible for the type of the dynamic behavior. At the same time, the Liouville theorem does not hold, and the phase volume can undergo compression or expansion in certain state space domains. Numerical simulations reveal phenomena characteristic of nonholonomic systems with complex dynamics (like the rattleback or the Chaplygin top). In particular, on the energy surface attractors associated with regular sustained motions can occur, settling in domains of prevalent phase volume compression together with repellers in domains of the phase volume expansion. In addition, chaotic and quasi-periodic regimes take place similar to those observed in conservative nonlinear dynamics.


nonholonomic mechanics Chaplygin sleigh attractor chaos bifurcation Chirikov–Taylor map 


37J60 37C10 34D45 37E30 34C60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.CrossRefzbMATHGoogle Scholar
  2. 2.
    Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, New York: Springer, 2013.zbMATHGoogle Scholar
  3. 3.
    Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).Google Scholar
  4. 4.
    Sagdeev, R. Z., Usikov, D.A., and Zaslavsky, G.M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Chur: Harwood Acad. Publ., 1990.Google Scholar
  5. 5.
    Lichtenberg, A. J. and Lieberman, M.A., Regular and Chaotic Dynamics, 2nd ed. Appl. Math. Sci., vol. 38, New York: Springer, 1992.CrossRefzbMATHGoogle Scholar
  6. 6.
    Reichl, L.E., The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, New York: Springer, 2004.CrossRefzbMATHGoogle Scholar
  7. 7.
    Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Transl. Math. Monogr., vol. 33, Providence,R.I.: AMS, 2004.CrossRefzbMATHGoogle Scholar
  8. 8.
    Bloch, A.M., Nonholonomic Mechanics and Control, 2nd ed., Interdiscip. Appl. Math., vol. 24, New York: Springer, 2015.CrossRefGoogle Scholar
  9. 9.
    Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in NonholonomicMechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Caughey, T. K., A Mathematical Model of the “Rattleback”, Internat. J. Non-Linear Mech., 1980, vol. 15, nos. 4–5, pp. 293–302.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kozlov, V.V., On the Theory of Integration of the Equations of NonholonomicMechanics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.CrossRefGoogle Scholar
  14. 14.
    Karapetyan, A.V., Hopf Bifurcation in a Problem of Rigid Body Moving on a Rough Plane, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1985, no. 2, pp. 19–24 (Russian).Google Scholar
  15. 15.
    Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics–Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.Google Scholar
  16. 16.
    Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.Google Scholar
  17. 17.
    Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Borisov, A.V., Kazakov, A.O., and Pivovarova, E.N., Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 885–901.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Borisov, A.V., Kazakov, A.O., and Sataev, I.R., Spiral Chaos in the NonholonomicModel of a Chaplygin Top, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 939–954.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kuznetsov, S.P., On the Validity of the Nonholonomic Model of the Rattleback, Physics–Uspekhi, 2015, vol. 58, no. 12, pp. 1223–1224; see also: Uspekhi Fiz. Nauk, 2015, vol. 185, no. 12, pp. 1342–1344.Google Scholar
  22. 22.
    Roberts, J.A.G. and Quispel, G.R.W., Chaos and Time-Reversal Symmetry: Order and Chaos in Reversible Dynamical Systems, Phys. Rep., 1992, vol. 216, nos. 2–3, pp. 63–177.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lamb, J. S.W. and Roberts, J.A.G., Time-Reversal Symmetry in Dynamical Systems: A Survey, Phys. D, 1998, vol. 112, nos. 1–2, pp. 1–39.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Politi, A., Oppo, G. L., and Badii, R., Coexistence of Conservative and Dissipative Behavior in Reversible Dynamical Systems, Phys. Rev. A, 1986, vol. 33, no. 6, pp. 4055–4060.CrossRefGoogle Scholar
  25. 25.
    Lamb, J. S.W., Melbourne, I., and Wulff, C., Bifurcation from Periodic Solutions with Spatiotemporal Symmetry, including Resonances and Mode Interactions, J. Differential Equations, 2003, vol. 191, no. 2, pp. 377–407.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pikovsky, A. and Topaj, D., Reversibility vs. Synchronization in Oscillator Latties, Phys. D, 2002, vol. 170, pp. 118–130.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sprott, J. C. and Hoover, W. G., Harmonic Oscillators with Nonlinear Damping, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 11, 1730037, 19 pp.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Chaplygin, S.A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Carathéodory, C., Der Schlitten, Z. Angew. Math. Mech., 1933, vol. 13, no. 2, pp. 71–76.CrossRefGoogle Scholar
  30. 30.
    Borisov, A.V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156–161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219–225.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jung, P., Marchegiani, G., and Marchesoni, F., Nonholonomic Diffusion of a Stochastic Sled, Phys. Rev. E, 2016, vol. 93, no. 1, 012606, 9 pp.CrossRefGoogle Scholar
  32. 32.
    Borisov, A. V. and Kuznetsov, S.P., Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 792–803.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tallapragada, P. and Fedonyuk, V., Steering a Chaplygin Sleigh Using Periodic Impulses, J. Comput. Nonlinear Dynam., 2017, vol. 12, no. 5, 054501, 5 pp.CrossRefGoogle Scholar
  34. 34.
    Kuznetsov, S.P., Regular and Chaotic Motions of the Chaplygin Sleigh with Periodically Switched Location of Nonholonomic Constraint, Europhys. Lett., 2017, vol. 118, no. 1, 10007, 7 pp.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge: Cambridge Univ. Press, 2016.CrossRefzbMATHGoogle Scholar
  36. 36.
    Ott, E., Grebogi, C., and Yorke, J.A., Controlling Chaos, Phys. Rev. Lett., 1990, vol. 64, no. 11, pp. 1196–1199.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pyragas, K., Continious Control of Chaos by Self-Controlling Feedback, Phys. Lett. A, 1992, vol. 170, no. 6, pp. 421–428.CrossRefGoogle Scholar
  38. 38.
    Handbook of Chaos Control, E. Schöll, H.G. Schuster (Eds.), Weinheim: Wiley, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussia
  2. 2.Kotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratov BranchSaratovRussia

Personalised recommendations