Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 1, pp 120–126 | Cite as

Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators

  • Nataliya V. StankevichEmail author
  • Anton Dvorak
  • Vladimir Astakhov
  • Patrycja Jaros
  • Marcin Kapitaniak
  • Przemysław Perlikowski
  • Tomasz Kapitaniak
Article

Abstract

The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.

Keywords

chaos hyperchaos Toda oscillator 

MSC2010 numbers

37C99 37E99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rössler, O.E., An Equation for Hyperchaos, Phys. Lett. A, 1979, vol. 71, nos. 2–3, pp. 155–157.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baier, G. and Klein, M., Maximum Hyperchaos in Generalized Hénon Maps, Phys. Lett. A, 1990, vol. 151, nos. 6–7, pp. 281–284.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Stefański, K., Modelling Chaos and Hyperchaos with 3D Maps, Chaos Solitons Fractals, 1998, vol. 9, nos. 1–2, pp. 83–93.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Reiterer, P., Lainscsek, C., Schürrer, F., Letellier, Ch., and Maquet, J., A Nine-Dimensional Lorenz System to Study High-Dimensional Chaos, J. Phys. A, 1998, vol. 31, no. 34, pp. 7121–7139.CrossRefzbMATHGoogle Scholar
  5. 5.
    Yanchuk, S. and Kapitaniak, T., Chaos–Hyperchaos Transition in Coupled Rössler Systems, Phys. Lett. A, 2001, vol. 290, nos. 3–4, pp. 139–144.CrossRefzbMATHGoogle Scholar
  6. 6.
    Yanchuk, S. and Kapitaniak, T., Symmetry-Increasing Bifurctaion as a Predictor of a Chaos-Hyperchaos Transition in Coupled Systems, Phys. Rev. E, 2001, vol. 64, no. 5, 056235, 5 pp.Google Scholar
  7. 7.
    Kozłowski, J., Parlitz, U., and Lauterborn, W., Bifurcation Analysis of Two Coupled Periodically Driven Duffing Oscillators, Phys. Rev. E, 1995, vol. 51, no. 3, pp. 1861–1967.CrossRefGoogle Scholar
  8. 8.
    Perlikowski, P., Yanchuk, S., Wolfrum, M., Stefanski, A., Mosiolek, P., and Kapitaniak, T., Routes to Complex Dynamics in a Ring of Unidirectionally Coupled Systems, Chaos, 2010, vol. 20, no. 1, 013111, 10 pp.Google Scholar
  9. 9.
    Stoop, R., Peinke, J., Parisi, J., Röhricht, B., and Huebener, R.P., A p-Ge Semiconductor Experiment Showing Chaos and Hyperchaos, Phys. D, 1989, vol. 35, no. 3, pp. 425–435.CrossRefGoogle Scholar
  10. 10.
    Kapitaniak, T. and Chua, L.O., Hyperchaotic Attractors of Unidirectionally-Coupled Chua’s Circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1994, vol. 4, no. 2, pp. 477–482.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kapitaniak, T., Chua, L.O., and Zhong, G.-Q., Experimental Hyperchaos in Coupled Chua’s Circuits, IEEE Trans. Circuits Syst. I, 1994, vol. 41, no. 7, pp. 499–503.CrossRefGoogle Scholar
  12. 12.
    Geist, K. and Lauterborn, W., The Nonlinear Dynamics of the Damped and Driven Toda Chain: 1. Energy Bifurcation Diagrams, Phys. D, 1988, vol. 31, no. 1, pp. 103–116.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Geist, K. and Lauterborn, W., The Nonlinear Dynamics of the Damped and Driven Toda Chain: 2. Fourier and Lyapunov Analysis of Tori, Phys. D, 1990, vol. 41, no. 1, pp. 1–25.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Geist, K. and Lauterborn, W., The Nonlinear Dynamics of the Damped and Driven Toda Chain: 3. Classification of the Nonlinear Resonances and Local Bifurcations, Phys. D, 1991, vol. 52, nos. 2–3, pp. 551–559.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, New York: Cambridge Univ. Press, 2001.CrossRefzbMATHGoogle Scholar
  16. 16.
    Kuznetsov, A.P., Seleznev, E.P., and Stankevich, N. V., Nonautonomous Dynamics of Coupled van der Pol Oscillators in the Regime of Amplitude Death, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 9, pp. 3740–3746.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kuznetsov, A.P., Sedova, Yu.V., Coupled Systems with Hyperchaos and Quasiperiodicity, J. Appl. Nonlinear Dyn., 2016, vol. 5, no. 2, pp. 161–167.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Toda, M., Studies of a Non-Linear Lattice, Phys. Rep., 1975, vol. 18C, no. 1, pp. 1–123.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Oppo, G. I. and Politi, A., Toda Potential in Laser Equations, Z. Phys. B, 1985, vol. 59, no. 1, pp. 111–115.CrossRefGoogle Scholar
  20. 20.
    Kouznetsov, D., Bisson, J.-F., Li, J., and Ueda, K., Self-Pulsing Laser as Oscillator Toda: Approximations through Elementary Functions, J. Phys. A, 2007, vol. 40, no. 9, pp. 2107–2124.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ermentrout, G.B., Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, Software, Environments, and Tools, vol. 14, Philadelphia, Pa.: SIAM, 2002.CrossRefzbMATHGoogle Scholar
  22. 22.
    Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory, Meccanica, 1980, vol. 15, pp. 9–20.CrossRefzbMATHGoogle Scholar
  23. 23.
    Kurz, Th. and Lauterborn, W., Bifurcation Structure of the Toda Oscillator, Phys. Rev. A (3), 1988, vol. 37, no. 3, pp. 1029–1031.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Astakhov, V.V., Bezruchko, B.P., Kuznetsov, S.P., and Seleznev, E.P., Onset of Quasiperiodic Motions in a System of Dissipatively Coupled Nonlinear Oscillators Driven by a Periodic External Force, Sov. Tech. Phys. Lett., 1988, vol. 14, no. 1, pp. 16–18; see also: Pis’ma Zh. Tekh. Fiz., 1988, vol. 14, no. 1, pp. 37–41.Google Scholar
  25. 25.
    Vitolo, R., Broer, H., and Simó, C., Quasi-Periodic Bifurcations of Invariant Circles in Low-Dimensional Dissipative Dynamical Systems, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 154–184.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Nataliya V. Stankevich
    • 1
    • 2
    Email author
  • Anton Dvorak
    • 1
  • Vladimir Astakhov
    • 3
  • Patrycja Jaros
    • 3
  • Marcin Kapitaniak
    • 4
  • Przemysław Perlikowski
    • 3
  • Tomasz Kapitaniak
    • 3
  1. 1.Department of Radioelectronics and TelecommunicationsYuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.Faculty of Information TechnologyUniversity of JyvaskylaJyvaskylaFinland
  3. 3.Division of DynamicsLodz University of TechnologyLodzPoland
  4. 4.Centre for Applied Dynamics ResearchUniversity of AberdeenAberdeen, ScotlandUK

Personalised recommendations