Advertisement

Regular and Chaotic Dynamics

, Volume 23, Issue 1, pp 60–79 | Cite as

Dynamics on the Double Morse Potential: A Paradigm for Roaming Reactions with no Saddle Points

  • Barry K. Carpenter
  • Gregory S. Ezra
  • Stavros C. Farantos
  • Zeb C. Kramer
  • Stephen Wiggins
Article
  • 144 Downloads

Abstract

In this paper we analyze a two-degree-of-freedom Hamiltonian system constructed from two planar Morse potentials. The resulting potential energy surface has two potential wells surrounded by an unbounded flat region containing no critical points. In addition, the model has an index one saddle between the potential wells. We study the dynamical mechanisms underlying transport between the two potential wells, with emphasis on the role of the flat region surrounding the wells. The model allows us to probe many of the features of the “roaming mechanism” whose reaction dynamics are of current interest in the chemistry community.

Keywords

Double Morse potential phase space structure dynamics periodic orbit roaming 

MSC2010 numbers

37Axx 37Jxx 37Nxx 37N20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Townsend, D., Lahankar, S. A., Lee, S.K., Chambreau, S.D., Suits, A.G., Zhang, X., Rheinecker, J., Harding, L. B., and Bowman, J.M., The Roaming Atom: Straying from the Reaction Path in Formaldehyde Decomposition, Science, 2004, vol. 306, no. 5699, pp. 1158–1161.CrossRefGoogle Scholar
  2. 2.
    Bowman, J.M. and Suits, A.G., Roaming Reactions: The Third Way, Phys. Today, 2011, vol. 64, no. 11, pp. 33–37.CrossRefGoogle Scholar
  3. 2a.
    Bowman, J.M. and Shepler, B.C., Roaming Radicals, Annu. Rev. Phys. Chem., 2011, vol. 62, pp. 531–553.CrossRefGoogle Scholar
  4. 2b.
    Suits, A.G., Roaming Atoms and Radicals: A New Mechanism in Molecular Dissociation, Acc. Chem. Res., 2008, vol. 41, no. 7, pp. 873–881.CrossRefGoogle Scholar
  5. 2c.
    Mauguière, F. A., Collins, P., Kramer, Z. C., Carpenter, B.K., Ezra, G. S., Farantos, S.C., and Wiggins, S., Roaming: A Phase Space Perspective, Annu. Rev. Phys. Chem., 2017, vol. 68, pp. 499–524.CrossRefGoogle Scholar
  6. 3.
    Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Appl. Math. Sci., vol. 105, New York: Springer, 2013.zbMATHGoogle Scholar
  7. 3a.
    Uzer, T., Jaffé, C., Palacián, J., Yanguas, P., and Wiggins, S., The Geometry of Reaction Dynamics, Nonlinearity, 2002, vol. 15, no. 4, pp. 957–992.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 3b.
    Wiggins, S., Wiesenfeld, L., Jaffé, C., Uzer, T., Impenetrable Barriers in Phase-Space, Phys. Rev. Lett., 2001, vol. 86, no. 24, pp. 5478–5481.CrossRefGoogle Scholar
  9. 3c.
    Wiggins, S., The Role of Normally Hyperbolic Invariant Manifolds (NHIMs) in the Context of the Phase Space Setting for Chemical Reaction Dynamics, Regul. Chaotic Dyn., 2016, vol. 21, no. 6, pp. 621–638.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 4.
    Mauguière, F. A., Collins, P., Kramer, Z. C., Carpenter, B.K., Ezra, G. S., Farantos, S.C., and Wiggins, S., Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition, J. Phys. Chem. Lett., 2015, vol. 6, no. 20, pp. 4123–4128.CrossRefGoogle Scholar
  11. 5.
    Morse, P. M., Diatomic Molecules According to the Wave Mechanics: 2. Vibrational Levels, Phys. Rev., 1929, vol. 34, no. 1, pp. 57–64.CrossRefzbMATHGoogle Scholar
  12. 6.
    Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Spatial Problem of 2 Bodies on a Sphere: Reduction and Stochasticity, Regul. Chaotic Dyn., 2016, vol. 21, no. 5, pp. 556–580.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 7.
    Moser, J., Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Ann. of Math. Stud., No. 77, Princeton, N.J.: Princeton Univ. Press, 2001.CrossRefzbMATHGoogle Scholar
  14. 8.
    Verlet, L., Computer “Experiments” on Classical Fluids: 1. Thermodynamical Properties of Lennard–Jones Molecules, Phys. Rev., 1967, vol. 159, no. 1, pp. 98–103.CrossRefGoogle Scholar
  15. 8a.
    Press, W. H., Teukolsky, S.A., Vetterling, W. T., and Flannery, B.P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., New York: Cambridge Univ. Press, 2007.zbMATHGoogle Scholar
  16. 9.
    Seoane, J.M. and Sanjuán, M.A. F., New Developments in Classical Chaotic Scattering, Rep. Prog. Phys., 2013, vol. 76, no. 1, 016001, 53 pp.Google Scholar
  17. 10.
    Carpenter, B. K., Nonstatistical Dynamics in Thermal Reactions of Polyatomic Molecules, Annu. Rev. Phys. Chem., 2005, vol. 56, pp. 57–89.CrossRefGoogle Scholar
  18. 11.
    Pechukas, P. and Pollak, E., Classical Transition State Theory Is Exact If the Transition State Is Unique, J. Chem. Phys., 1979, vol. 71, no. 5, pp. 2062–2068.MathSciNetCrossRefGoogle Scholar
  19. 11a.
    Pechukas, P. and Pollak, E., Trapped Trajectories at the Boundary of Reactivity Bands in Molecular Collisions, J. Chem. Phys., 1977, vol. 67, no. 12, pp. 5976–5977.CrossRefGoogle Scholar
  20. 11b.
    Pollak, E., Child, M. S., and Pechukas, P., Classical Transition State Theory: A Lower Bound to the Reaction Probability, J. Chem. Phys., 1980, vol. 72, no. 3, pp. 1669–1678.MathSciNetCrossRefGoogle Scholar
  21. 11c.
    Pollak, E. and Pechukas, P., Transition States, Trapped Trajectories, and Classical Bound States Embedded in the Continuum, J. Chem. Phys., 1978, vol. 69, no. 3, pp. 1218–1226.CrossRefGoogle Scholar
  22. 12.
    Mauguière, F. A., Collins, P., Kramer, Z. C., Carpenter, B.K., Ezra, G. S., Farantos, S.C., and Wiggins, S., Phase Space Barriers and Dividing Surfaces in the Absence of Critical Points of the Potential Energy: Application to Roaming in Ozone, J. Chem. Phys., 2016, vol. 144, no. 5, 054107, 12 pp.Google Scholar
  23. 13.
    Carpenter, B. K., Ezra, G. S., Farantos, S.C., Kramer, Z.C., and Wiggins, S., Empirical Classification of Trajectory Data: An Opportunity for the Use of Machine Learning in Molecular Dynamics, J. Phys. Chem. B, 12 Oct 2017, DOI: 10.1021/acs.jpcb.7b08707.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Barry K. Carpenter
    • 1
  • Gregory S. Ezra
    • 2
  • Stavros C. Farantos
    • 3
  • Zeb C. Kramer
    • 4
  • Stephen Wiggins
    • 5
  1. 1.School of ChemistryCardiff UniversityCardiffUK
  2. 2.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  3. 3.Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, and Department of ChemistryUniversity of CreteIraklionGreece
  4. 4.Department of Chemistry and BiochemistryLa Salle UniversityPhiladelphiaUSA
  5. 5.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations