Regular and Chaotic Dynamics

, Volume 22, Issue 3, pp 210–225 | Cite as

Autonomous strange nonchaotic oscillations in a system of mechanical rotators

  • Alexey Yu. JalnineEmail author
  • Sergey P. Kuznetsov


We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.


autonomous dynamical system mechanical rotators quasi-periodic oscillations strange nonchaotic attractor chaos 

MSC2010 numbers

34C15 34C28 34C46 37C55 37C70 37D45 70K43 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feudel, U., Kuznetsov, S., and Pikovsky, A., Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, vol. 56, Hackensack,N.J.: World Sci., 2006.Google Scholar
  2. 2.
    Ding, M. Zh., Grebogi, C., and Ott, E, Dimensions of Strange Nonchaotic Attractors, Phys. Lett. A, 1989, vol. 137, nos. 4–5, pp. 167–172.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hunt, B.R. and Ott, E, Fractal Properties of Robust Strange Nonchaotic Attractors, Phys. Rev. Lett., 2001, vol. 87, no. 25, 254101, 4 pp.CrossRefGoogle Scholar
  4. 4.
    Pikovsky, A. and Feudel, U, Correlations and Spectra of Strange Nonchaotic Attractors, J. Phys. A, 1994, vol. 27, no. 15, pp. 5209–5219.CrossRefzbMATHGoogle Scholar
  5. 5.
    Feudel, U., Pikovsky, A., and Politi, A, Renormalization of Correlations and Spectra of a Strange Nonchaotic Attractor, J. Phys. A, 1996, vol. 29, no. 17, pp. 5297–5311.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pikovsky, A. S., Zaks, M.A., Feudel, U., and Kurths, J, Singular Continuous Spectra in Dissipative Dynamics, Phys. Rev. E(3), 1995, vol. 52, no. 1, part A, pp. 285–296.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grebogi, C., Ott, E., Pelikan, S., and Yorke, J.A, Strange Attractors That Are Not Chaotic, Phys. D, 1984, vol. 13, nos. 1–2, pp. 261–268.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bondeson, A., Ott, E., and Antonsen, Th. M., Quasiperiodically Forced Damped Pendula and Schrödinger Equations with Quasiperiodic Potentials: Implications of Their Equivalence, Phys. Rev. Lett., 1985, vol. 55, no. 20, pp. 2103–2106.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ding, M., Grebogi, C., and Ott, E, Evolution of Attractors in Quasiperiodically Forced Systems: From Quasiperiodic to Strange Nonchaotic to Chaotic, Phys. Rev. A, 1989, vol. 39, no. 5, pp. 2593–2598.CrossRefGoogle Scholar
  10. 10.
    Pikovsky, A. S. and Feudel, U, Characterization of Strange Nonchaotic Attractors, Chaos, 1995, vol. 5, no. 1, pp. 253–260.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feudel, U., Kurths, J., and Pikovsky, A. S, Strange Non-Chaotic Attractor in a Quasiperiodically Forced Circle Map, Phys. D, 1995, vol. 88, nos. 3–4, pp. 176–186.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kuznetsov, S.P., Pikovsky, A. S., and Feudel, U, Birth of a Strange Nonchaotic Attractor: A Renormalization Group Analysis, Phys. Rev. E (3), 1995, vol. 51, no. 3, part A, R1629–R1632.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nishikawa, T. and Kaneko, K, Fractalization of a Torus as a Strange Nonchaotic Attractor, Phys. Rev. E, 1996, vol. 54, no. 6, pp. 6114–6124.CrossRefGoogle Scholar
  14. 14.
    Glendinning, P, Intermittency and Strange Nonchaotic Attractors in Quasi-Periodically Forced Circle Maps, Phys. Lett. A, 1998, vol. 244, no. 6, pp. 545–550.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, S.-Y., Lim, W., and Ott, E, Mechanism for the Intermittent Route to Strange Nonchaotic Attractors, Phys. Rev. E, 2003, vol. 67, no. 5, 056203, 5 pp.CrossRefGoogle Scholar
  16. 16.
    Osinga, H., Wiersig, J., Glendinning, P., and Feudel, U, Multistability and Nonsmooth Bifurcations in the Quasiperiodically Forced Circle Map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2001, vol. 11, no. 12, pp. 3085–3105.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kuznetsov, S.P, Torus Fractalization and Intermittency, Phys. Rev. E(3), 2002, vol. 65, no. 6, 066209, 13 pp.MathSciNetGoogle Scholar
  18. 18.
    Kuznetsov, S.P. and Neumann, E, Torus Fractalization and Singularities in the Current-Voltage Characteristics for the Quasiperiodically Forced Josephson Junction, Europhys. Lett., 2003, vol. 61, no. 1, pp. 20–26.CrossRefGoogle Scholar
  19. 19.
    Jalnine, A.Yu. and Osbaldestin, A. H, Smooth and Nonsmooth Dependence of Lyapunov Vectors upon the Angle Variable on a Torus in the Context of Torus-Doubling Transitions in the Quasiperiodically Forced Hénon Map, Phys. Rev. E(3), 2005, vol. 71, no. 1, 016206, 14 pp.MathSciNetGoogle Scholar
  20. 20.
    Jalnine, A.Yu., Kuznetsov, S.P., and Osbaldestin, A. H, Dynamics of Small Perturbations of Orbits on a Torus in a Quasiperiodically Forced 2D Dissipative Map, Regul. Chaotic Dyn., 2006, vol. 11, no. 1, pp. 19–30.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jalnine, A.Yu. and Kuznetsov, S.P, On the Realization of the Hunt–Ott Strange Nonchaotic Attractor in a Physical System, Tech. Phys., 2007, vol. 52, no. 4, pp. 401–408; see also: Zh. Tekh. Fiz., 2007 vol. 77, no. 4, pp. 10–18.CrossRefGoogle Scholar
  22. 22.
    Ditto, W. L., Spano, M. L., Savage, H.T., Rauseo, S.N., Heagy, J., and Ott, E, Experimental Observation of a Strange Nonchaotic Attractor, Phys. Rev. Lett., 1990, vol. 65, no. 5, pp. 533–536.CrossRefGoogle Scholar
  23. 23.
    Vohra, S.T., Bucholtz, F., Koo, K.P., and Dagenais, D.M, Experimental Observation of Period-Doubling Suppression in the Strain Dynamics of a Magnetostrictive Ribbon, Phys. Rev. Lett., 1991, vol. 66, no. 2, pp. 212–215.CrossRefGoogle Scholar
  24. 24.
    Zhou, T., Moss, F., and Bulsara, A, Observation of a Strange Nonchaotic Attractor in a Multistable Potential, Phys. Rev. A, 1992, vol. 45, no. 8, pp. 5394–5400.CrossRefGoogle Scholar
  25. 25.
    Ding, W.X., Deutsch, H., Dinklage, A., and Wilke, C, Observation of a Strange Nonchaotic Attractor in a Neon Glow Discharge, Phys. Rev. E, 1997, vol. 55, no. 3, pp. 3769–3772.CrossRefGoogle Scholar
  26. 26.
    Yang, T. and Bilimgut, K, Experimental Results of Strange Nonchaotic Phenomenon in a Second-Order Quasi-Periodically Forced Electronic Circuit, Phys. Lett. A, 1997, vol. 236, nos. 5–6, pp. 494–504.CrossRefGoogle Scholar
  27. 27.
    Bezruchko, B.P., Kuznetsov, S.P., and Seleznev, Ye.P., Experimental Observation of Dynamics Near the Torus-Doubling Terminal Critical Point, Phys. Rev. E, 2000, vol. 62, no. 6, pp. 7828–7830.CrossRefGoogle Scholar
  28. 28.
    Anishchenko, V. S., Vadivasova, T. E., and Sosnovtseva, O.V, Strange Nonchaotic Attractors in Autonomous and Periodically Driven Systems, Phys. Rev. E, 1996, vol. 54, no. 4, pp. 3231–3234.CrossRefGoogle Scholar
  29. 29.
    Pikovsky, A. S. and Feudel, U, Comment on “Strange Nonchaotic Attractors in Autonomous and Periodically Driven Systems”, Phys. Rev. E, 1997, vol. 56, no. 6, pp. 7320–7321.CrossRefGoogle Scholar
  30. 30.
    Mitsui, T. and Aizawa, Y, Intermittency Route to Strange Nonchaotic Attractors in a Non-Skew- Product Map, Phys. Rev. E, 2010, vol. 81, no. 4, 046210, 8 pp.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jalnine, A.Yu. and Kuznetsov, S.P, Strange Nonchaotic Self-Oscillator, Europhys. Lett., 2016, vol. 115, no. 3, 30004, 5 pp.CrossRefGoogle Scholar
  32. 32.
    Goldstein, H., Poole, Ch.P., and Safko, J.L., Classical Mechanics, 3rd ed., Boston,Mass.: Addison-Wesley, 2001.Google Scholar
  33. 33.
    Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge: Cambridge Univ. Press, 2016.Google Scholar
  34. 34.
    Ott, E., Chaos in Dynamical Systems, Cambridge: Cambridge Univ. Press, 1993.Google Scholar
  35. 35.
    Lai, Y.-C., Transition from Strange Nonchaotic to Strange Chaotic Attractors, Phys. Rev. E, 1996, vol. 53, no. 1, pp. 57–65.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ramaswamy, R, Synchronization of Strange Nonchaotic Attractors, Phys. Rev. E, 1997, vol. 56, no. 6, pp. 7294–7296.CrossRefGoogle Scholar
  37. 37.
    Zhou, C. and Chen, T, Robust Communication via Synchronization between Nonchaotic Strange Attractors, Europhys. Lett., 1997, vol. 38, no. 4, pp. 261–265.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Saratov Branch of Kotel’nikov’s Institute of Radio-Engineering and Electronics of RASSaratovRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations