Skip to main content
Log in

Arnold diffusion for a complete family of perturbations

  • On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, φ, s) = p 2/2+ cos q − 1 + I 2/2 + h(q, φ, s; ε) — proving that for any small periodic perturbation of the form h(q, φ, s; ε) = ε cos q (a 00 + a 10 cosφ + a 01 cos s) (a 10 a 01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ π/2μ, μ = a 10/a 01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard, P., Arnold’s Diffusion: From the a priori Unstable to the a priori Stable Case, in Proc. of the 26th Internat. Congress of Mathematicians (ICM 2010, Hyderabad, India): Vol. 3, New Delhi: Hindustan Book Agency, 2010, pp. 1680–1700.

    Google Scholar 

  2. Bernard, P., Kaloshin, V., and Zhang, K., Arnold Diffusion in Arbitrary Degrees of Freedom and Crumpled 3-Dimensional Normally Hyperbolic Invariant Cylinders, Acta Math., 2017 (to appear).

    Google Scholar 

  3. Berti, M., Biasco, L., and Bolle, Ph., Drift in Phase Space: A New Variational Mechanism with Optimal Diffusion Time, J. Math. Pures Appl. (9), 2003, vol. 82, no. 6, pp. 613–664.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessi, U., Chierchia, L., and Valdinoci, E., Upper Bounds on Arnold Diffusion Times via Mather Theory, J. Math. Pures Appl. (9), 2001, vol. 80, no. 1, pp. 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bounemoura, A. and Marco, J.-P., Improved Exponential Stability for Near-Integrable Quasi-Convex Hamiltonians, Nonlinearity, 2011, vol. 24, no. 1, pp. 97–112.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, Ch.-Q. and Yan, J., Arnold Diffusion in Hamiltonian Systems: A priori Unstable Case, J. Differential Geom., 2009, vol. 82, no. 2, pp. 229–277.

    MathSciNet  MATH  Google Scholar 

  7. Chierchia, L. and Gallavotti, G., Drift and Diffusion in Phase Space, Ann. Inst. H.Poincaré Phys. Théor., 1994, vol. 60, no. 1, 144 pp.

    MathSciNet  MATH  Google Scholar 

  8. Cresson, J., The Transfer Lemma for Graff Tori and Arnold Diffusion Time, Discrete Contin. Dynam. Systems, 2001, vol. 7, no. 4, pp. 787–800.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cresson, J., Symbolic Dynamics and Arnold Diffusion, J. Differential Equations, 2003, vol. 187, no. 2, pp. 269–292.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cresson, J. and Guillet, Ch., Periodic Orbits and Arnold Diffusion, Discrete Contin. Dyn. Syst., 2003, vol. 9, no. 2, pp. 451–470.

    MathSciNet  MATH  Google Scholar 

  11. Delshams, A., de la Llave, R., and Seara, T. M., A Geometric Approach to the Existence of Orbits with Unbounded Energy in Generic Periodic Perturbations by a Potential of Generic Geodesic Flows of T2, Comm. Math. Phys., 2000, vol. 209, no. 2, pp. 353–392.

    Article  MathSciNet  MATH  Google Scholar 

  12. Delshams, A., de la Llave, R., and Seara, T. M., A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model, Mem. Amer. Math. Soc., 2006, vol. 179, no. 844, 141 pp.

    MathSciNet  MATH  Google Scholar 

  13. Delshams, A., de la Llave, R., and Seara, T.M., Geometric Properties of the ScatteringMap of a Normally Hyperbolic Invariant Manifold, Adv. Math., 2008, vol. 217, no. 3, pp. 1096–1153.

    Article  MathSciNet  MATH  Google Scholar 

  14. Delshams, A. and Huguet, G., Geography of Resonances and Arnold Diffusion in a priori Unstable Hamiltonian Systems, Nonlinearity, 2009, vol. 22, no. 8, pp. 1997–2077.

    Article  MathSciNet  MATH  Google Scholar 

  15. Delshams, A. and Huguet, G., A Geometric Mechanism of Diffusion: Rigorous Verification in a priori Unstable Hamiltonian Systems, J. Differential Equations, 2011, vol. 250, no. 5, pp. 2601–2623.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fontich, E. and Martín, P., Differentiable Invariant Manifolds for Partially Hyperbolic Tori and a Lambda Lemma, Nonlinearity, 2000, vol. 13, no. 5, pp. 1561–1593.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fontich, E. and Martín, P., Hamiltonian Systems with Orbits Covering Densely Submanifolds of Small Codimension, Nonlinear Anal., 2003, vol. 52, no. 1, pp. 315–327.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gidea, M., de la Llave, R., and Seara, T.M., A General Mechanism of Diffusion in Hamiltonian Systems: Qualitative Results, arXiv:1405.0866 (2014).

    Google Scholar 

  19. Kaloshin, V. and Levi, M., An Example of Arnold Diffusion for Near-Integrable Hamiltonians, Bull. Amer. Math. Soc. (N. S.), 2008, vol. 45, no. 3, pp. 409–427.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaloshin, V. and Levi, M., Geometry of Arnold Diffusion, SIAM Rev., 2008, vol. 50, no. 4, pp. 702–720.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaloshin, V. and Zhang, K., Arnold Diffusion for Smooth Convex Systems of Two and a Half Degrees of Freedom, Nonlinearity, 2015, vol. 28, no. 8, pp. 2699–2720.

    Article  MathSciNet  MATH  Google Scholar 

  22. Loshak, P., Canonical Perturbation Theory: An Approach Based on Joint Approximations, Russian Math. Surveys, 1992, vol. 47, no. 6, pp. 57–133; see also: Uspekhi Mat. Nauk, 1992, vol. 47, no. 6(288), pp. 59–140.

    Article  MathSciNet  Google Scholar 

  23. Lochak, P. and Marco, J.-P., Diffusion Times and Stability Exponents for Nearly Integrable Analytic Systems, Cent. Eur. J. Math., 2005, vol. 3, no. 3, pp. 342–397.

    Article  MathSciNet  MATH  Google Scholar 

  24. Marco, J.-P., Transition le long des chaines de tores invariants pour les systèmes Hamiltoniens analytiques, Ann. Inst. H. Poincaré Phys. Théor., 1996, vol. 64, no. 2, pp. 205–252.

    MathSciNet  Google Scholar 

  25. Mather, J.N., Arnold Diffusion by Variational Methods, in Essays in Mathematics and Its Applications, Heidelberg: Springer, 2012, pp. 271–285.

    Google Scholar 

  26. Nekhoroshev, N. N., An Exponential Estimate of the time of Stability of Nearly Integrable Hamiltonian Systems, Russian Math. Surveys, 1977, vol. 32, no. 6, pp. 1–65; see also: Uspekhi Mat. Nauk, 1977, vol. 32, no. 6(198), pp. 5–66, 287.

    Article  MathSciNet  MATH  Google Scholar 

  27. Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, 3rd ed., Texts Appl. Math., vol. 12, New York: Springer, 2002.

    Book  MATH  Google Scholar 

  28. Treschev, D., Evolution of Slow Variables in a priori Unstable Hamiltonian Systems, Nonlinearity, 2004, vol. 17, no. 5, pp. 1803–1841.

    Article  MathSciNet  MATH  Google Scholar 

  29. Treschev, D., Arnold Diffusion Far from Strong Resonances in Multidimensional a priori Unstable Hamiltonian Systems, Nonlinearity, 2012, vol. 25, no. 9, pp. 2717–2757.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, K., Speed of Arnold Diffusion for Analytic Hamiltonian Systems, Invent. Math., 2011, vol. 186, no. 2, pp. 255–290.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadeu Delshams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delshams, A., Schaefer, R.G. Arnold diffusion for a complete family of perturbations. Regul. Chaot. Dyn. 22, 78–108 (2017). https://doi.org/10.1134/S1560354717010051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354717010051

Keywords

Navigation